D=AD40 468 GOODYEAR AEROSPACE CORP AKRON OHIO F/6 9/2
SPECIFICATION FOR A STARAN PROGRAMMING LANGUAGE.(U)
APR 77 R 6 LANGE: H CHEESEMAN: E W DAVIS F30602=76=C~=0200
UNCLASSIFIED GER=16347 RADC=TR=77=131

NL
‘ OFJ\=

x 3. --,‘ g .'v DA M
- RN 2 M O, _of SN - Wi VRt A VR SEONTEE S ‘#'m"\; U s .
PR o %, o %o] g ; ‘ ‘

0 ;

N®) j

<H

i RADC-TR-77-131
Final Technical Report 3

T april 1977 :

<

et

o

<

SPECIFICATION FOR A STARAN PROGRAMMING LANGUAGE

Goodyear Aerospace Corporation

Approved for public release; distribution unlimited.

. ROME AIR DEVELOPMENT CENTER
) AIR FORCE SYSTEMS COMMAND
3 GRIFFISS AIR FORCE BASE, NEW YORK 13441
T
[
2=
=
=S
\

ds

This report has been reviewed by the RADC Information Office (OI) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public including foreign nations.

AR AT lle

This report has been reviewed and is approved for publication.

ORSES LS

APPROVED: # V/ U@

ARMAND A. VITO
Project Engineer

,, o (ARAD A

ROBERT D. KRUTZ, Colonel, USAF
Chief, Information Sciences Division

i
]
bl
3
¥
3

[FOR THE COMMANDER : fl /ﬁ
i ./‘ Jouul P. mx;'.s

Acting Chief, Plans Office

e

Do not return this copy.A Retain or destroy.

S RTA™R T

o T

N

LW RATIVN CGTAETRTT

B

o

e e e /Ww
- - ¥ Final Technical Repset

1 —) ,-\1 €. -ORO-REPORT-NUMBER

ST ()it) GER-16347

7. AUTHOR(2) _} R GRANT NUMBER(3)
R.G. /Lange . E. w.,’?Davis ‘ = F3P602-76-C—02_0P / 2

_ H./Cheeseman R.W./Lott \/ 2 F
L 4

$ PEF.IFORMING ORGANIZATION NAME AND AODRE'S‘S 10. i:giROA':OERLKE'JSINTTNPURMOBJEERCST' TASK
Goodyear Aerospace Corporation .| 62702F & 637018~

IINCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

(171 REPORT DOCUMENTATION PAGE AEECEE

2. GOVT ACCESSION NO.| 3. RECIPIENT’S CATALOG NUMBER

R.ADC TR-77- 131)

NG LANGUAGE
SPECIFICATION FOR A STARAN PROGRAMMING I I\ s s ot /

1210 Massillon Road "L)| 32820317
Akron OH 44315 \//L
.

V1. ~7.. _ROLLING OFFICE NAME AND ADDRESS ”‘--*‘RQRL.Q&I_F

Rome &£r Development Center (ISCA) i/ / f AQ Uﬁm g” p, ;

Griffiss AFB NY 13441 "OF RAGES.. j Sy,
171 () 2— 7/

T4, MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) | 15. SECURITY CTASS. (W

Same UNCLASSIFIED

>
/7

1Sa, DECLASSIFICATION/ DOWNGRADING
SCHEDULE
N/A

16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different {rom Report)
Same

18. SUPPLEMENTARY NOTES
RADC Project Engineer: Armand A. Vito (ISCA) R L
This document was prepared with the aid of the RUNOFF Facilicy at RADC.

19. KEY WORDS (Continue on reverse side if neceesary and identify by block number)

Programming Language Higher Order Language (HOL)
Parallel Processing High Level Language (HLL)
Associative Processing

Language Specification

STARAN

107,' ABSTRACT (Continue on reverse side If necessary and identify by block number)

‘This specification defines a procedure-oriented language with emphasis on
parallel arithmetic and associative processing features. The meanings of the
more common operations on scalars are promoted to multiple element data organi-
zations. Data types and structures are provided to support these operationms,
and the structured design and programming disciplines.

(see reverse)
-

0D , :2:!” 1473 €0iTiON OF 1 NOV 68 1S OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

=

S

_t

INCLASSTFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Deta Entered)

\V4Le language is designed to be useful with the Goodyear Aerospace Corporation

STARAN computer system. However, no feature of the language is strictly
dependent on the STARAN architecture for proper executiontb

\

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

PREFACE

E | The facilities of the Multics system at Rome Air
2 Development Center were used in the Preparation of this
E . T XY

3 -~ N e

%

S

B e

B L L

L —

L

B

e

4
;

1
4

¢
t

1

1

1

1

1

1

1

1

1

1l

1

2

2

2

2

2

2

E: 2

% 2

k. 2

i 2

2

& 2

2

: 2
|

; 3

- 3

¥ 3

¢ 3

E 3

|2 3

ge 3

i 3

i 3

|3 3

25 3

1x 3

3

3

3

3

ol
.2
.3
.4
.4
.4
.4
.4
.5
.6

BWWWWWWWwWwNNNNNNDND N -

TABLE OF CONTENTS

INTRODUCTION

Purpose of the Specification
Organization of the Specification
Definitions

Syntax Meta-language

1 Category-name

2 Production Rules and Syntax

3 Syntactic Expressions and Units
4 Application of the Production Rules
Additional Conventions
Implementation Defined Properties

STATIC PROGRAM STRUCTURE
Programs

Blocks and Block Structure
Groups

Statements

1 Procedural Statements

2 Statement Prefixes
Lexical Syntax

1 Text

2 Delimiters, Blanks, and Comments
3 1Identifiers

4 Literal Constants

5 1I-subs
Reserved Words
Keyword Abbreviations

DATA
Variables and Constants
Data Types
Cardinal
Fixed-point
Floating=-point
Bit-string
Character-string
Data Organization
Scalars
Arrays of Scalars
Structures
Arrays of Structures

Data Aggregates
Sharing of Storage

Data Storage

OV s W N U WN -~

ii

h)h)h)h)h)h)&)h)h)h)h)h)h)w)h) bt bl ot Bt et et e e

(]
NUE&ELWWWWWNNN - VOONOUVUNIWUNIUIL &b WL N BB WWNN -

wwwwwww?uuwwwwww

. aal -
3.4.1 Storage Classes 3-7
3.4.2 Memory Properties 3-8
3.4.3 Storage of Arrays 3-8
3.4.4 Connected Storage 3-8
3.5 Declarations 3-8
3.5.1 Scope of a Declaration 3-8
3.5.2 The Declare Statement 3-9
3.6 The Data Attributes 3-1¢
3.6.1 Aligned 3-10
3.6.2 Automatic 3-11
i 3.6.3 Bit 3-11
3.6.4 Builtin 3-12
3.6.5 Cardinal 3-12
3.6.6 Character 3-12
! 3.6.7 Constant 3-12
3.6.8 Controlled 3-13
3 3.6.9 Defined 3-13
3.6.18 Dimension 3-13
3.6.11 Entry 3-14
3.6.12 External - 3-14
A 3.6.13 Fixed 3-14
. 3.6.14 Float 3-15
{ 3.6.15 1Initial 3-15
3.6.16 Length 3-15
i 3.6.17 Memory 3-16
! 3.6.18 Precision 3-16
; 3.6.19 Range 3-16
¥ 3.6.20 sStatic 3-17
¢ 3.6.21 Unaligned 3-17
3.6.22 Varying 3-18
4 3.7 Data Attribute Sets 3-18
{ 3.7.1 Conflicting Attribute Set Members 3-18
3.7.2 Required Attribute Set Members 3-19
$ 3.7.3 Default Attributes 3-28
4 4. DATA REFERENCES AND EXPRESSIONS 4-1
5 4,1 Expressions 4-1
8 4.1.1 Evaluation of Expressions 4-2
A 4.1.2 Evaluation of Prefix and Infix Expressions 4-2
¥ 4.1.3 The Order of Operator Evaluation 4-2
& 4.1.4 Reducibility and Side-effects 4-4
2 4.1.5 Exceptions in Expression Evaluation 4-4
i 4.2 References y 4-5
4.2.1 simple Reference 4-7
4.2.2 Array Reference 4-7
4.2.3 Selection Qualification 4-8
4.2.4 Structure Qualification 4-18
4.2.5 Qualified Reference Resolution 4-12
4.2.6 Function Reference 4-13

iii

S R TR S T o

7 Built-in Function References
8 Parameters and Arguments
9 Function Reference Reducibility
Formal Syntax of Expressions
1 General Expressions
2 Constant-valued Expressions
Operators
1 Arithmetic Operators
2 Bit-string Operators
3 The String Operator
4 The Relational Operators
Conversions
1 Conversion Order
2 Cardinal to Fixed
3 Fixed to Cardinal

Conformance of Aggregate Types
1 Contexts That Force Promotion
2 Types of Promotion
3 Promotion Rules

Built-in Functions
1 sString Built-in Functions
2 Arithmetic Built-in Functions
3 Mathematical Built-in Functions
4 Array Built-in Functions
5 Miscellaneous Built-in Functions

THE DYNAMIC BEHAVIOR OF A PROGRAM

The Flow of Control

A Program

Procedures
1 Procedure Statement
2 The Routine Statement
3 Entry Attributes

Procedures and Dynamic Block Structures
1 Procedure Activation
2 The Environment of an Activation

The Flow of Control Within an Activation
Inter-block Flow of Control
.1 Procedures
.2 On Units

aooOUnNdbsbWWWWNOH-

CONTROL STATEMENTS
1l 1Iterative DO~Loop
1.1 Range of a DO-Loop
1.2 Active and Inactive DO-Loops
1.3 Executing an Iterative DO Statement
1.4 Loop Control Processing
1.5 Execution of the Range
1.6 ENDDO Statement Processing

A OO0 (S, 0 G, BV N0, JE, NC, R RV VR RN NE] [N N N S N

iv

L)
WWRNNN - O 000NN U W

T, T
s

S —

——

——

5
!
:
b
g
b
F

.1.7 Incrementation Processing

.2 Repetitive DO-Loop

.2.1 Range of a DO WHILE-loop

.2.2 Active and Inactive DO WHILE-loops
.2.3 Executing a DO WHILE Statement
.2.4 Loop Control Processing

.2.5 Execution of the Range

.2.6 ENDDO Statement Processing

.3 The Do Case Group

.3.1 Body of DO CASE-group

.3.2 Executing a DO CASE Statement
«3.3

.4 Conditional Statements

.4.1 The IF Statement

.4.2 The IFARRAY Statement

.4.3 The Logical If Statement

.5 CALL and RETURN Statements

.5.1 CALL Statement

.5.2 RETURN Statement

.6 GO TO Statement

.7 EXIT Statement

ASSIGNMENT AND ALLOCATION STATEMENTS
Assignment Statement

1 Scalar Assignment

2 Array Assignment

3 Scalar Broadcast Assignment

4 Structure Assignment

ALLOCATE Statement
FREE Statement

NNNNNNNS ooV ON

INPUT/OUTPUT

Introduction

Datasets
Dataset Organization
Consecutive Dataset
Direct dataset

1

2

3

1 File Attributes

2 Opening a file

3 The Open Statement

4 Closing a File

5 The Close Statement
Data Transmission statements
.1 The Read Statement

.2 The Write Statement
.3 The Rewrite Statement
.4 The Delete Statement
.5 Transmission Options

0 00 €O 0o G0 Co o o GO0 Co GO CO OO 0O GO O ™

Transfer Relative to a DO CASE-group

o O
[IR - W= W~ W W N . AW N AW W W W N N
==

HEHEOVOONNNOOULLLUUL & & W

\l\l\'lxlslsl\lul
| |

! LI
WNHROOOONAUIDNDNNNHEE VEabWWkH -

OG0 00 0o 00 Co 00 O0 OO0 OO OO0 0 OO0 OO
|

mm?m
|]
b)

o~

¢
;
b
P

8.4.6 Data Transmission Examples

9. CONDITIONS
9.1 Conditions in the Language
Conversion Condition
Endfile Condition
Error Condition
FInish Condition
Fixedoverflow Condition
Key Condition
Overflow Condition
Record Condition
Size Condition
@ Storage Condition
1 Stringrange Condition
2 Stringsize Condition
3 Subscriptrange Condition
4 Transmit Condition
5 Undefinedfile Condition
6 Underflow Condition
7 Zerodivide Condition
tatements and Program Effects
The Signal Statement
The Revert Statement

@\D\D‘DO\D\D\D\O\D\D\D\D\D\D\D\D’O\D\Q
® o o o 0 o o o o o o o o o o o o

e & e o o o o 6 o e ° o ° 0 0 o 0+ o o o

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2.
2.

Appendices

Complete Syntax

Terms

Sample Programs

User Library Sample Procedure

vi

D-1

(e o]
|
-
w

\ ;1R LA VA
UV BsEWWWWWWWRNNNDNNNK -

WOOWOLWOVOLWOVOYWOVUYWOVOYWOWOWOLOOWWYWY OO
)

B Ty

EVALUATION
This effort was undertaken to provide a specification of a Higher Order

Language (HOL) for the Goodyear Aerospace Corporation STARAN parallel,

associative, array computer. This would allow programmers to apply parallel,

associative and array solutions to computational problems using a HOL.

The benefits of a HOL for a STARAN type architecture are the same as for
a serial computer with the additional benefit that it will aid the programmer
in his thinking toward parallel and associative solutions for his computational
problems. The effort represents the successful completion of one aspect of

RADC's comprehensive investigation into associative processing for Air Force

applications (TPO-12, FY 75 & 76).
This was a joint effort by RADC and the Defense Mapping Agency (DMA).

RADC and DMA have a similar desire to derive computational benefits through
the use of parallel, associative, array architectures.

768i4¢hQ4t&(3{ é/{éi:J

ARMAND A. VITO
Project Engineer

vii

Introduction

1. INTRODUCTION

This specification document defines a language with parallel arithmetic
and associative processing features. Statements are defined to support the
design of programs with arithmetic, logical, and associative processing
aspects. The meanings of operations and expressions extend over single and :
multiple element data organizations. The types, organization, and attributes !
of data are versatile in their support of the language features.

J—————

The language 1is designed to be wuseful with the Goodyear Aerospace
1 Corporation STARAI (l) computer system. However, no feature of the language
is strictly dependent on the STARAN architecture for proper execution.

1.1 Purpose of the Specification

This specification contains the syntactic and semantic definitions of ,
E the language. A formal meta-language is used to define the syntax. Semantic :
] definitions are in prosc. Sufficient detail is provided for developing a

coupiler for the language.

Information necessary to write programs 1is included, however this

i specification 1is not intended to be a language reference manual. It does not
include programuing examples unless they are useful for specification
‘ purposes. It does not attempt to show total application program development.

1.2 Organization of the Specification

-

Section 1, Introduction, gives information which is useful or necessary
for understanding the remainder of the specification. The formal notation
used throughout the document is defined. No actual language details are
introduced, Section 2, Static Program Structure, gives both the highest and
lowest level language definition. At the highest level, program structure is
established. At the lowest level, the lexical syntax is defined.

B Section 3 1is «concerned with data. The data types, organization, and
attributes are specified. Section 4, Data References and Expressions, covers
i the uses of data as operands in expressions and the operators in the language

are defined. Dynamic Program Execution, section 5, is concerned with the run

3 e time definitions of procedure invocation, parameter passing, block
A activation, and flow of control.

Lttt

WP TN RIALETR

(1) TM Goodyear Aerospace Corp., Akron, Ohio 44315

1-1

; -.;,LRM-“ .-\? A

Introduction

Specification of control statements is given in section 6. Assignment
and storage allocation statements are covered in section 7. In section 8 the
definition of files and the input/output statements are given. Section 9
defines the facilities for signalling a process based on the existence of a
particular condition or process interrupt.

1.3 Definitions

Terms defined in prose are underlined when defined and not underlined
thereafter. Examples are provided to aid understanding but are not intended
to be comprehensive or definitive.

All examples are clearly set off from the rest of the text as shown by
the example below. Within examples where empty space might be misleading, ¥
denotes a blank. Upper and lower case letters are used freely in examples to
help distinguish declared variables from keywords of the language.

l.4 Syntax Meta-language

The language is defined using a formal meta-language to define the
syntax and prose to describe the semantics. Although this is not a strictly
formal definition, both the syntactic and semantic descriptions are

§ reasonably precise and complete.

f The syntax of the language is defined by a set of syntax rules expressed
in a formal notation derived from Backus-Maur Form (BNF). Each syntax rule
describes a character-string or pattern of characters that constitutes a
syntactic construct of the language proper. The complete set of syntax rules
describes all syntactically correct programs in the language.

- o

Each rule is of the form:

category-name ::= one or more syntactic
expressions

Example:
<file option> ::= FILE (<expression>)

In the example, <file option> is a category-name that represents the
character-string described by the syntactic expression on the right of the
definition symbol "::=", "FILE" is a notation constant that represents an
& actual occurrence of the character-string "FILE". The occurrence of
<expression> is a category-name defined by another rule. The occurrence of (

o prm
Lep P

RE £ B

1-2

LT

i
r
‘.

I '-,;:'.A“-Q’.,ut-’ v dat W

Introduction
and) represent actual occurrences of left and right parenthesis,

l1.4.1 Category-name

A category-name 1is bracketed by < and > and contains any sequence of
lower case letters and other characters not including >.

Example:
<into option> ::= INTO (<reference>)

When the prose refers to the category-name <into option> or <reference>,
these terms appear exactly as they do in the syntax rule. When a keyword,
such as INTO, appears in the prose, it is enclosed in quotes(") or written as

upper case to delimit {t from the prose.

1.4,2 Production Rules and Syntax

Production rules serve as the declarative portion of the metalanguge and
do so by specifying restrictions on the forms that are acceptable program

text.
' A production-rule consists of a category-name, followed by the symbol
i "::=" and then followed by a syntactic-expression (sece Section l.4.3). The
symbol "::=" can be read as "is defined to be".

: Such a production-rule is termed a defining production-rule for the
E ¢ category-name written before the "::="., Within this document, there is at
most one defining production-rule for any given category-name.

2 The basic function of a production-rule is to define a set of
possibilities for the number, type(s), and order of the immediate subnodes of

in the syntax tree whose type is the defined category-name. This is

a node
the production-rule

L done by interpreting the syntactic-expression of
according to the algorithms given below (sce Section l.4.4).

A syntax is any set of production-rules. For example, the set of all of

the production-rules in this document is a syntax.

1f a defining production-rule for a category-name occurs in a syntax,

. then that category-name is said to be non-terminal. Any category-name that
i occurs somewhere within the syntactic-expressions of the production-rules of
1 the syntax, but has no defining production rule in the syntax, is said to be

terminal.

L AT
4

A

WAL

1-3

Eh

w

-

W AT ARETRGLTRT

Ay

Introduction

l.4.3 Syntactic Expressions and Units

Given a syntax, a syntactic-expression is defined to be either a single
syntactic-unit, or several syntactic-units any of the adjacent pairs of which
is possibly separated by a "|" or a "a". The symbols are called the
or-symbol and the bullet, respectively.

Given a syntax, a syntactic-unit is defined to be one of the following:

a single category-name,
a syntactic-expression enclosed in the brackets "[" and "]",
a syntactic-expression enclosed in the braces "{" and "}", or

a syntactic-expression followed by an ellipsis "..." .

l.4.4 Application of the Production Rules

Civen a syntax and a category-name, the algorithm shown just below
obtains an (possibly empty) ordered set of category-names, termed here an
interpretation with respect to the given syntax of the given category-name.

l.4.4.1 Category-name Meaning
An interpretation of a category-name is defined as follows:
Case 1.

There 1is in the given syntax a defining production rule for the given
category-name.

An interpretation is an interpretation of the syntactic-expression
written following the "::=" in the defining production-rule.

Case 2.
(Otherwise).

The given category-name is a terminal with respect to the given syntax;
the interpretation is the empty set.

l.4.4.2 Syntactic Expression Meaning
An interpretation of a syntactic-expression is defined as follows:

Case 1. The syntactic-expression is a syntactic-unit.

1-4

Jorea

3

{
¢
¢

Introduction

Case 1.1 One Instance
The syntactic-unit is a single category-name.

An interpretation consists of the ordered set containing just
this single category-name.

Case 1.2 Option
The syntactic-unit 1is a syntactic-expression enclosed in the
brackets "[" and "]".

An interpretation consists either of an interpretation of the
enclosed syntactic-expression, or of the empty set.

Case 1.3 Grouping
The syntactic-unit is a syntactic-expression enclosed in the
braces "{" and "}",

An 1interpretation consists of an interpretation of the
enclosed syntactic-expression.

Case l.4 Repetition
The syntactic-unit 1is a syntactic-expression followed by an
ellipsis "..." .

An interpretation consists of one or more interpretations of
the given syntactic-expression,

Case 2.

The syntactic-expression is a sequence of two or more syntactic-units

" l ” "n_n
.

possibly separated by a or a "m

Case 2.1 An or-symbol occurs as at least one such a separator.

Consider all or-symbols occurring in the given
syntactic-expression to partition it into a sequence of inner
syntactic-expressions. An interpretation is one of any of these
inner syntactic-expressions chosen arbitrarily.

Case 2.2 A bullet occurs as such a separator and an or-symbol does
not.

Consider all bullets occurring thus in the given
syntactic-expression to partition it into a sequence of inner
syntactic-expressions. An interpretation is the same as one of a
syntactic-expression formed by arranging the sequence in an
arbitrary order and omitting these bullets.,

Introduction

Case 2.3 (Otherwise).
(The syntactic-expression is a sequence of
syntactic~expressions optionally separated by blanks.)

An interpretation consists of the concatenation, in order, of
interpretations of the syntactic-expressions of the sequence.

In summary the syntactic expressions are built using the following
meta-operations.

Syntactic Expression Operation Symbol
Catenation "spaces"
Alternation |
Repetition ees
Grouping { }
Optional [)
Unordered Catenation a

Note:

In the language specification the use of left-recursive production rules
for category-names 1is avoided, although that form with the additional
category-names as required is useful for implementation,

1.5 Additional Conventions

Common mathematical symbols are wused with their usual meaning. In
addition, the following notational conventions arc used:

* denotes multiplication;
/ denotes division;
fa ceil(x) denotes the smallest integer
2 larger than or equal to x;
E floor(x) denotes the largest integer
§ smaller than or equal to x;
¢ min(x,y) denotes the value of x if x <y,
g otherwise the value of y;
& max(x,y) denotes the value of x if x >y,
ﬁ otherwise the value of y.
|
¥
E é
I: 1-6
4
| ¥
¥

T,

e

L

i

%
*
§

Introduction

1.6 Implementation Defined Properties

The following list shows those items or situations in the language which
are defined by the implementation rather than by the language.
user controllable or absolutely bound by the implementation.

They may be
1. Determination of actual dataset names (8.3.2) on file opening.

2. EKRVIRONMENT attribute and option syntax and semantics (8.3.1.9).

3. Standard action for conditions (9.2).

4., Situations when STORAGE condition is raised (9.2).

5. Actual represcntation of a datasect.

6. The size of a RECORD.

7. Situations in which TRANSMIT condition is raised.

8. Raising of RECORD condition by WRITE statement.

9. Position of records in a KEYED SEQUENTIAL file.

10. Length of a record KEY (8.3.1.8).

11, Maximum precisions of arithmetic data (4.4.1).

12, Determination of floating-point results of expressions and
builtin functions (4.4.1.2, 4.7).

13. Character collating sequence (4.7, COLLATL).

l4. Exact results of numeric conversions (4.7).

15. Number of digits (bits) in the exponent of
a floating=-point data item.

16. Situations when ERROR is raised.

Satem et~

SRR,

;
¥
¢

Data

The format of DEFINED is:
DEFINED <reference>

The <extent> expressions of a defined variable are evaluated upon block
activation and saved in the block activation record; see section 3.6.2 for

the rules on the extents of automatic variables.

A defined variable is always associated with the generation identified
by its <reference> =-this is known as its base <reference>. The defined
variable is never allocated and thus has no <initial> attribute. The
variable identified by the base <reference> cannot be a defined variable or

named constant (<constant> attribute).

The <defined attribute> cannot be specified for members of structures.
when specified for a structure, it maps the entire structure onto the
generation of storage identified by the base <reference>.

The <expression>s contained in the base <reference> are evaluated upon
each reference to the defined variable. Any <reference>s within the base
<reference> are resolved in the <block> in which the defined variable is
declared. FRefer to section 4 for a complete discussion of <reference>

resolution and evaluation.

Both the extents of the defined variable and those of the base variable,
are used to determine if any condition has occurred; these are
subscriptrange, stringrange, and stringsize (refer to section 9).

3.3.6.3 1I-sub Defining

I-sub defining allows an array to be defined onto another array by means
of a programmer—defined mapping between the elements of the defined array and

its base array.

For i-sub defining the <reference> must contain one or more <i-sub>s in
its <subscript>s.

For i-sub defining, the form of the <reference> defines the relationship
between elements of the defined variable and elements of the base variable.
The subscript expression selects an element of the base variable for each
allowable combination of subscripts of the defined wvariable. If
SUBSCRIPTRANGE is enabled for a reference to the defined variable, the
subscripts are checked against the bounds of the defined variable, then the
i-sub expression is evaluated and the resulting subscripts are checked
against the bounds of the base variable. Each <subscript> value is converted
to a binary integer (FIXED(15,0)) before replacing an <i-sub>.

3-6

P

%

S S P RS

¥
’
#

Data

The aggregate type of an expression 1is the dimensionality, array
extents, and structuring determined by the rules of expression evaluation and
aggregate promotion given in section 4.

3.3.6 Sharing of Storage

There are two facilities specified in the language for sharing a
generation of storage among two or more variables. These are parameters and
defined variables. These features require that the variables which share a
generation of storage have identical data types and alignment <attributeds,
thus providing a guarantee that the veriables have identical storage
representations.

Both facilities provide techniques for sharing a generation of storage
that is contained in an aggregate generation without having to share the
entire aggregate. For example, scalars can be mapped onto array elements or
members of structures and arrays can be mapped onto portions of arrays or
arrays of structures.

3.3.6.1 Storage Sharing by Parameters

There are several possible forms of parameter passing in programming
languages. This specification of argument passing in section 4 describes
arqument passing by-value and by-reference. When a variable is passed
by-reference to a parameter, the variable and the parameter refer to the same
generation of storage and thus share that generation.

Example:

sub: PROCEDURE(pP); ... ENDPROC sub;
CALL sub(a);

The execution of the CALL statement invokes sub. During the block activation
of SUB A and P both refer to the same generation of storage.
3.3.6.2 Array Storage Sharing by Defined Variables

The <defined attribute> is provided with "i-sub defining" to map a

defined variable onto a generation of storage of another variable. The
latter may e an array or an array of structures.

- s

3.3.3 Structures

A structure is an ordered set of data elements which may have different
attributes but must have <level> specified in the <declaration component>s.
The elements may be scalars or arrays. A hierarchical relationship exists
among data elements of the structure. The relationship is indicated by the
relative values of the level numbers in the declaration.

For a given pair of <declaration component>s with equal <level> numbers,
the data items are on the same hierarchical level. If the second <level>
number is larger, its <declaration component> is nested within the first. If
the second <level> number 1is smaller than the first, the first
<declaration component> is nested within the second. The main structure
(root) is a <declaration component> with <level> that is not subordinate to
any <declaration component> and is said to be (hierarchically) at level-one.
Nested structures are the subordinate <declaration component> items and are
at higher numbered "level"s.

A variable is defined to be a level-one variable if it is a main
structure or a declared variable that is not a structure. Thus scalars and

arrays which are not in a structure are level-one variables.

The main structure, nested structures, and the data elements have names.
Qualification is used to uniquely identify a nested structure or data element
name. A qualified name consists of the name of the main structure and all
nested structures leading to the structure or data element name to De~

identified, with periods between each pair of names.

3.3.4 Arrays of Structures

An array of structures is a structure with the attribute <dimen§?35;i
Each element of the array is thus a structure with structuring identig%i/to

all other elements.

3.3.5 Data Aggregates

An aggregate value is a set of scalar values. An aggregate value ¥ an
array of scalars, a structure, or an array of structures. Named constants,
variables, functions, and expressions can have aggregate values.

The data type of an aggregate value is the ordered set of data typec of

ite scalar components. The aggregate type of an aggregate named constant,
variable, or function value is the dimensionality and array extents specified

by the <dimension> attribute and the structuring specified by the <level>s
used in its declaration.

e, ottt i il

3.2.4 Bit-string

A bit-string data item represents a bit-string value stored as a
contiguous sequence of bits.

The attribute for declaring a bit-string data item is <bit>. The
<length> attribute is used to specify the number of bits in the sequence.

3.2.5 Character-string

A character-string data item represents a character-string value stored
as a contiguous sequence of characters. Character data is represented in the
ASCII code.

The attribute for declaring a character-string item is <character>. The
<length> attribute is used to specify the number of characters in the string.

3.3 Data Organization

The language has several modes for data items, either single items
called scalars or collections. The latter are referred to collectively as

aggrgates .

3.3.1 Scalars

A scalar is a single element of data or one member of a set of data
elements. A scalar may appear in a program as a constant or as a variable
representing one element of data.

3.3.2 Arrays of Scalars

An array is an ordered set of scalars, all having identical attributes.
An array is identified by a single symbolic name. An array appears in a
program as a variable representing a set of scalars.

An array element 1is a scalar. The unique identification of an array
element consists of the array name and the position of the element in the
array. The position in the array is indicated by a bracketed subscript list
following the name as specified in section 4.2.

The elements of an array are stored as an ordered sequence such that the
rightmost subscript varies most rapidly and the leftmost subscript varies
least rapidly. This order is called row-major order and is consistant with
arrays of structures, section 3.3.4.

B T TP

T ARTES

|3
f

3.2.1 Cardinal

A cardinal data item represents an unsigned integral value stored ac a
binary number; thercfore, cardinal data may assume only zero or positive
integral values.

The attribute for declaring a cardinal data item is <cardinal>. The
<precision> attribute is used to specify the number of bits of precision for
the data item.

3.2.2 Fixed-point

A fixed-point data item represents a signed, real value stored as a
binary number with an assumed binary point. Fixed-point data may take on
negative, zero, or positive values,

The attribute for declaring a fixed-point data item is <fixed>. It must
be followed by the <precision> attribute or the <range> attribute to define
the set of values for the data item.

The <precision> attribute is used to specify the number of bits of
precision for the data item and the scale factor. The scale factor indicates
the location of the assumed binary point.

The <range> attribute, if written, specifies the smallest and largest
values for the fixed-point data and the significance required for
intermediate values. The latter is determined by the <scale factor> as a
function of the <scale> option of the <range> attribute (see section 3.6.19).

A fixed-point integer is a fixed-point data item with a scale factor of
zero.

3.2.3 Floating-point

A floating-point data item represents a signed, real value stored as a
signed mantissa with a signed exponent.

The attribute for declaring a floating-point data item is <float>. The
<precision> attribute is used to specify the number of bits of precision for
the mantissa of the data iter.

3. DATA

3.1 Variables and Constants

A variable is a data item which may change in value during the execution
of a program. A constant is a data item which cannot change in value.
Reference to a data item is made by the use of a symbolic name or the
occurrence of a literal constant in a program. A variable appears in a
program as a symbolic name. A constant appears in a program either as a
literal constant or as a named constant. The syntax for literal constants is

specified in section 2. Named constants are defined with the <constant>
attribute.

3.2 Data Types

Data is separated into computational and non-computational categories.
The types of data in the non-computational category are "entry" and "file".
They are primarily specified in sections 5 and 8, respectively. Five types
of computational data are defined. Each type is different in internal
representation and in the values it may assume. The specification of data
types 1s concerned with the abstract properties of the data rather than the
internal representation. Thus the storage reguirements for each type are not
specified.

Computational data is further separated into arithmetic and string
types.

Arithmetic data types are:
(1) cardinal
(2) fixed-point
(3) floating-point

String data types are:
(1) bit-string
(2) character-string

Arithmetic data is represented in a binary base. String data is a
contiguous sequence of bits or characters.

The term extent is used to reference the precision of arithmetic data,
the length of string data, and/or the dimensions of an array.

ALLOCATION
CHARACTER
CONDITION
CONTROLLED
ENVIROLIENT
FIXEDOVERFLOV
NOCONVERSION
NOFIXEDOVELFLOW
NOOVLRFLOV:
NOSTRINGRANGE
NOSTRINGSIZL
I:OSUESCRIPTRANGE
NOUNDERTLOU
NOZERODIVIDL
PRLCISION
SEQUENTIAL
STRINGRANGE
STRINGSIZE
SUBSCRIPTRANGE
URALIGNED
UNDERFLOW
UKDLFINEDFILE
ZLCRODIVIDL

ALLOCH
CHAR
COrD
CTL
ERV
FOFL
NOCONV
KNOTOFL
NOOFL
ROSTRG
NOSTRZ

NOSULBRG

WOUFL
NOZDIV
PREC
SLQL
STRG
STRZ
SURRGC
ULIAL
UFL
UNDF
ZDIV

Static Program Structure

Static Program Structure
The <exponent> of a decimal <floating=-point constant> denotes a power of ten.

2.5.5 1I-subs

An <i-sub> is a <token> used only in a <subscript> of a <basec reference>
in a <defined> attribute. Its semantics are described in section 3.3.6.

Syntax:
<i=-sub> ::= <decimal integer> SUB
Example:

1SUB

2.6 Reserved Words

A small number of the language keywords are reserved and may not be
declared as user names. The reserved keywords are primarily those related to
program structure.

PROCEDURE ENDPROC DO EKNDDO

Ol EIDON ROUTINE

IF IFARRAY THEN ELSE EIDIF
DCCLARE SUB CASE ENDCASE

2.7 Keyword Abbreviations

Abbreviations are defined for certain keywords and builtin-functions The
abbreviations themselves are keywords or builtin-functions and will be
recognized as synonymous in every respect with the full denotations, except
that in the case of builtin-functions the abbreviations have separate
declarations and name scopes. The abbreviations are shown to the right of
the full denotations in the following list.

- .

AaF

237,

2

Tadl

)
o

Static Program Structure

A <cvi expression> is defined to be a constant-valued expression (see
section 4.3.2).

Syntax:

<character-string constant> ::= [(<cvi expression>)]
‘ [<character>]...

A null character string is denoted by ““. The character ° is represented

4

within a character string by “‘.

Example:
Source string Character value
‘abcd’ abcd
LA A A g ’
‘abcd” ‘ef’ abcd’ef
Illab'l' Iabl

2.5.4.3 Arithmetic Constants

An <arithmetic constant> is defined to be an arithmetic value that
remains constant and cannot be changed. The attributes of the constant,
i.e., type and precision, are normally determined by the constant’s syntax.

Syntax:

<arithmetic constant> ::= <decimal constant>

| <binary fixed-point constant>
<binary fixed=-point constant> ::=

{Ol1}ees [« [{O]1}eee]) B

I o €0{1}css B
<decimal constant> ::= <decimal fixed-point constant>

| <floating-point constant>

<floating-point constant> ::= <mantissa><exponent>
<mantissa> ::= <decimal fixed-point constant>
<exponent> ::= E[+ | =]<decimal integer>

<decimal fixed=-point constant> ::=
<decimal integer>
[» [<decimal integer>]]
| « <decimal integer>
<decimal integer> ::= <digit>...

LS

THETALLTRT,

-~

.

*

Static Program Structure

2.5.4 Literal Constants

A <literal constant> is used for an arithmetic or string value.

Syntax:
<literal constant> ::= <bit=-string constant>

| <character-string constant>
| <arithmetic constant>

2.5.4.1 Bit-String Constants

A <bit-string constant> is defined to be a sequence of zero and one bits

. derived from the zero and one binary digits of the constant within quotes. If

the optional <cvi expression> is present, the string of zero and one bits is
concatenated to itself N-l1 times, where N is the value of the
<cvi expression> and is an integer greater than zero.

Syntax:
<bit=-string constant> ::= [(<cvi expression>)]
{ B ’ <bit chars>...
| Q ° <quad chars>...
| O <octal chars>...
| X ° <hex chars>... ° }
<bit chars> ::= 0| 1 | <space>
<quad chars> ::= 2 | 3| <bit chars>
<octal chars> ::= 4 | 5| 6 | 7 | <quad chars>
<hex chars> ::= 8!19|lA|B|lCc|DI|E]|F
|

<octal chars>

The four forms of <bit-string constant> allow 1, 2, 3, or 4 bits to be
specified by each source '"digit'. The <space>s can be used to format longer
constants for readability.

2.5.4.,2 Character-String Constants

A <character-string constant> is defined to be the sequence of
characters derived by substituting a single quote for all double quotes, and
deleting the containing quotes. If the optional <cvi expression> is present,
the resulting string of characters is concatenated to itself N-1 times, where
N 1is the value of the <cvi expression> and is an integer greater than zcro.

W AT ETNLLTR TS

“3%

Static Program Structurc

Syntax:
<delimiter> ::= <graphic delimiter> | <space> | <comment>
<graphic delimiter> ::=+ | = | * | / | ~ | &
ENE R N EGE
L ke I_Lll
= | ™= | &= | 2=
Felzil <2
<space> ::= <blank> | <newline> | <newpage> | <tab>

<blank> ::= ASCII blank character

<newline> ::= ASCII new line character

<newpage> ::= ASCII new page character

<tab> ::= ASCII horizontal tab or ASCII vertical tab

<comment> ::= /* ASCII characters except an asterisk

followed by a slash #*/

THe <space>s and <conment>s can be used anywhere without restriction on
the length of a <comnent> or the number of <space>s between any two <token>s.
Whenever adjacent <identifier>s or <literal constant>s occur in the syntax
rules, at least one <space> or <comment> must be used to separate them.

The individual wusage and semantics for the <graphic delimiter>s are
given in subsequent sections of the specification.

2.5.3 1dentifiers

Identifiers are used for <declared name>s or keywords. A keyword
introduces a statement, a statement option, or a builtin function.

Syntax:

<identifier> ::= <letter>

[<letter> | <digit> | _ | S)...
<letter> ::= A | B | C|DJ|E|F |G |H|TI
I3 fElLIM|IRIO|lP| QIR
S T et VW XY

<digie> ¢x= O [L 20 3 145 |6 789

A single <identifier> cannot be more than 32 characters long.

e S

W I CRTALR T

P

Static Program Structure

2.4.2 Statement Prefixes

Syntax:

<prefix> ::= <label prefix> | <case prefix>
<label prefix> ::= <identifier>:

<case prefix> ::= CASE (<case number>) :
<case number> ::= <cvi expression>

| <cvi expression> : <cvi expression>

e oo

A <label prefix> is a means of naming a statement,

In certain contexts,
such as

within a loop, any <basic statement> may be named by being preceded
by a <label prefix>. A <cvi expression> is defined to be a constant-valued
expression (see section 4.3.2).

2.5 Lexical Syntax

2.5.1 Text

The lowest level syntactical component of the language is called a
<token>. Sequences of <token>s form statements which in

turn form
<program unit>s.

Syntax:

<token> ::= <identifier> | <literal constant>
| <delimiter> | <i=-sub>

2.5.2 Delimiters, Blanks, and Conments

2-5

Static Program Structure

2.4 Statements

The full syntax and semantics of the statements of the language are
given in sections 3 and 5 through Y. In this section, only the general
nature of statements is discussed and references to other relevant sections
of this document arc provided.

There are two types of statements: declarative statements and procedural
statements. There is onc declarative statement, the <declare statement>,
fully discussed in section 3. The execution of a <declare statement> or
<null statement> has no effect, even though all statements are considered to
be executable.

2.4.1 Procedural Statements

The procedural statements are used to form the executable statements of
a <program unit> in accordance with the syntax rules in section 2.2. Some of
them represent individual statements, whereas the <if statement>, for
example, must include a corresponding <endif>. The individual statements are
called <single statement>s and are listed below.

Syntax:

<allocate statement>
<assignment statement>
<call statement>
<close statement>
<declete statement>
<frce statement>
<goto statement>

<single statement> ::=
|
|
I
|
I
‘ |
! | <null statement>
|
I
|
|
|
|
|

-y

-

<open statement>
<read statement>
<return statement>
<revert statement>
<rewrite statement>
<signal statement>
<write statement>

The ";" syubol is used to delimit statements.

ARENGLTRYT

T
N
)
o

S

T AR P RTINS TRNTACETR T

Static Program Structurec

Example:

MAIN: PROCEDURE;

SECOND: PROCEDURE;

ALT: ROUTINE;

UTILITY: PROCEDURL;

ENDPROC UTILITY;

ENDPROC SECOND;

EIDPROC MAIN;

NHAIN is the <external procedure> and contains one <procedure> named SLCOND at
lexical level two. The latter has another routine (an entry) ALT, and also
contains a <procedure> named UTILITY at block level three.

2.3 CGroups

A <group> is a list of statements that are bracketed to control the
program flow during execution.

Syntax:

<group> ::= <jiterative loop>
| <repetitive loop>
| <case group>

The semantics of <group>s are contained in section 6.

Each <group> is headed by a form of the DO statcment. The DO statement
is the keyword DO followed by an iterative loop specification, a repetitive
loop specification or a case selection expression.

2-3

e

e 0

8
¢

Static Program Structure

Syntax:

<block> ::= <procedure>
<procedure> ::= <procedure statement>
<procedure body>
<endproc statement>
<procecdure body> ::= <procedure component>
[<routine statement>
<procedure component>]...
<procedure component> ::= <statement>...
<statement list> ::i= <statement>...
<statement> ::= <procedure>
| <declare statement>
| <basic statement>
| <prefix><basic statement>
<basic statement> ::= <group>
| <independent statement>

<independent statement> ::= <single statement>
| <conditional statement>

| <on statement>

All of the text of a <procedure>, except thc <label prefix>s”of each of

its <routine statement>s and the <closure identifier> of its

<endproc statement>, is contained in the <procedure>.

Exanple:

LOOK: PROCLCDUEE;

SLARCH:
ROUTINE;

o oo

ENDPROC LOOK;

The text shown with lines is contained in <procedure> LOOK.

The text contained in <block> LOOK, but not contained in any other
<block> contained in LOOlL,, is immediatcly contained in <block> LOOK.

2=2

Static Program Structure

a

2. STATIC PROGPA!M STRUCTURE

2.1 Prograus

A <program> consists of one or more <program unit>s together with their

environment; the latter is an implementation dependent context which includes
a file system. A <program unit> is the largest syntactic comnstruct of the
language; it is also the unit of input for compilation.

The set of <program unit>s that constitute a <program> is determined
dynamically by CALL statements and function references during execution of

the program as described in section 5, or by the use of a linking facility
prior to or during execution.

The use of the latter would restrict the set
F of <program unit>s to a statically specified set.
i Syntax:
<program> ::i= <praogram unit ...
<program unit> ::= <external procedure>
) <external procedure> ::= <procedure>
\ An <external procedure> is one not contained in another procedure. A
‘ ‘ <program unit> is always an external <block>.
Pe 2.2 Blocks and Block Structure
{ A <block>

%
delimits the scope of names in an <external procedure> and is
the major unit that determines the flow of control during program execution.
{ Refer to section 3 for the description of the

scope of names and to section 5
for the specification of the flow of control.

A <block> 1is an entire <program unit>

(<external procedure>) or any
<procedure> contained in another <procedure>.

ol Pl

pre B0

W I LR T

|
i
|
|
|
|
|
|
.

e

W RTINS

»
P
-

Data References and Expressions

® The order in which operands are promoted to higher aggregate types.

® The order in which the scalar data elements of aggregate operands
are operated upon by infix or prefix operators.

® The order in which <function reference>s are evaluated and number
of times a reducible <function reference> is evaluated.

4.1.4 Reducibility and Side-effects

A <procedure> may contain expressions which are identical in effect.
If, during execution of the program, the values of the operands are not
modified between evaluation of the expressions, such expressions are common

expressions.

If the value of an operator can be determined without evaluation of one
or more of its operands and no operand contains irreducible
<function reference>s, the operands are not necessarily evaluated.

A <procedure> that depends on the full evaluation of all operands or
upon an operand not being evaluated, is in error and the result of its
execution is undefined.

Example:
These statements are in error:
if B=¢ | 1/B > N then ...

if length(S)=C | substr(s, ...) then ...

4.1.5 Exceptions in Expression Evaluation

The facility of <on unit>s and the <on statement> allow programer
specification of certain exceptions that can occur during the evaluation of
references and expressions. Refer to section 9.1 for a full discussion of

conditions.

Since the order of <expression> evaluation is not strictly defined, the
order in which conditions are detected and the frequency with which they
occur are not defined.

If a condition is signaled during <expression> evaluation, the latter is
suspended as it would be for the execution of a <signal statement>. See the

description in section 9 regarding whether control can return from the
<on unit> to the point the exception occurred. For most conditions control

4-4

PR

T T e AT A R

- LT

#
E

Data References and Expressions

Associative operators of equal precedence are evaluated in an
unspecified order to allow optimization. The operators with this property
are: + * | & . Nonassociative operators of equal precedence are evaluated
from left-to-right, except for prefix operators which are evaluated from
right-to-left.

For an <expression> the precedence of all operators is:

High
| T~ prefix + prefix - **
I A
I infix + infix -
I I
| = = < < > Y, <= o=
| &
Low |

Implicit conversions are not provided generally, only a ~ubset of the
above operators are allowed in a given context according to the data types of
the operands (see section 4.5.1). For example, if all <referenced>s have the
data type bit-string, the operators allowed and their precedence is:

digh
I -~
| |
| =
| &
Low |

If all the data types are arithmetic, the operators allowed and their
precedence is:

High
I prefix + prefix - **
| . <
I infix + infix -
Low = = < < > > <= >=

The order of operator evaluation within <expression>s is determined by
the precedence of operators (section 4.3) and by parenthesization. Otherwise
the order of evaluation is not defined. A procedure that depends on any of

the following properties is in error and the results of its execution are not
defined:

@ The order in which associative operators of equal precedence are
evaluated.

I3
f

Cata keferences ani Lxprescions

4.1.1 [valuation of Expressions

Basic exgressions contain only a <reference> or a <literal constant>.
The evaluation of a basic expression produces a value with aggrecgate type and
data type determined by the declaration of the name identified by the
<reference> or the declaration of the <literal constant>. If the basic
expression 1is a <function reference>, the aggregate type and data type are
the aggregate type anc data type of the value returneé by the function, that
is, those declared with the function entry. '

The basic expression evaluation produces the value of the variable or

constant identified by the <reference> or <literal constant>. If the basic
expression is a <function reference>, the value of the evaluated basic

expression is the value returned by the function.

4.1.2 Evaluation of Prefix and Infix Expressions
The operator evaluation consists of:
1. The evaluation of the operand(s).

2. For infix expressions the two operands are promoted to the
higher common aggregate type as described in promotion, section 4.6.

3. The conversion of the value of the evaluated operand(s) to the
type required by the operator (if automatic conversion is defined, see
section 4.5). If either promoted operand is an aggregate, the operator
is applied to each (corresponding) scalar component in an unspecified

order.

4. The application of the operator to the converted value of the
operand. If the operand is an aggregate, the operator 1is applied to
each scalar component of the aggregate.

The result of the evaluation of a prefix expression is a value whose
aggregate type is the aggregate type of the evaluated operand. The data type
of each scalar component of the result is the data type of the corresponding
scalar component of the operand.

4.1.3 The Order of Operator Evaluation
Operator evaluation in an <expression> is performed in an order

determined by the syntactic precedence of the operators (see 4.3). It can be
overridden as needed by use of parentheses around subexpressions within the

expression.

4-2

A e

Data References and Expressions

4. DATA REFERENCES AND EXPRESSIONS

An expression represents an algorithm used for computing a value.
Expressions are of three types: scalar, array, and structure, depending upon
the aggregate type of the result. An array (or structure) expression is an
array (or structure) evaluated by expansion of the expression into a
collection of scalar expressions and interpretation in an undefined order.
Syntactically, an expression consists of a oonstant, a variable, an
expression enclosed in parentheses, an expression preceded by a prefix
operator, two expressions connected by an infix operator, or a function
reference that returns a value. In a few cases, operands in an expression
need not have the same data attributes. If they differ, oonversion is
performed before the operation.

There are three forms of (sub-)expressions related to the operators
contained in them: basic expressions, prefix expressions and infix
expressions. A basic expression is a single <reference> or
<literal constant>, a prefix expression is a prefix operator with one
operand, while an infix expression is an infix operator between two operands.
An operand is one of the three forms of <expression>s.

Examples of the expressions:

basic expression b x[i]
s.t function (x, y)
infix expression a*b x+1
a*p+c*d
prefix expression -n ~ state

4. Expressions

Expressions always hzve values of ‘he same data type and aggregate type,
except possibly for dicfering array-ex °>nts, thus they are characterized by
these two properties. They are refered ° in this specification as: scalar
<expression>s, array <expression>s, struc. re <expression>s, etc.

The data types for an <expression> are described in section 3.2 ané the
aggregate types are specified in section 3.3.

-

O T— A

3
f
f

Data

3.7.3 pefault Attributes

Every scalar, array, and fully gqualified structure name must have an
<attribute set> associated with it in a <declare statement>. The <attributeds
may be declared explicitly, however certain <attributed>c will be assumed as

defaults or implied if the <attribute set> is incomplete.

Section 3.5.2 provides the syntax for <attribute set> and <attribute>.
This section specifies the defaults and implications for category names in
the production of <attribute>. The table below lists the category names, the
action or <attribute> if the category name is not explicitly declared, and
the <attributeds implied by the explicit declaration of the category nare.

Category Name Default Implied Bttribute
<storage class> <automatic>

<alignment> compiler selected

<constant> variable

<dimension> scalar item

<external> internal <static>

<merory> compiler selected

There is no defined default for <data type>, <initial>, <precision>,
<range>, or <length>.

3-20

SR A

o

)
£

AR

W T

Attribute Conflicting Attributes

<aligned> <unaligned>

<automatic> <controlled>, <external>, <static>

<bit> <cardinal>, <character>, <fixed.,
<float>, <precision>, <range>

<cardinal> <bit>, <character>, <fixed>, <float>,
<length>, <varying>

<character> <bit>, <cardinal>, <fixed>, <float>,
<precision>, <range>

<constant> none

<controlled> <automatic>, <static>

<dimension> none

<external> <automatic>

<fixed> <bit>, <cardinal)>, <character>, <float>,
<length>, <varying>

<float> <bit>, <cardinal>, <character>, <fixed>,
<length>, <varying>, <range>

<initial> none

<length> <cardinal>, <fixed>, <float>

<memory> none

<precision> <bit>, <character>, <varying>

<range> <float>, <bit>, <character>, <varying>

<static> <automatic>, <controlled>,

<unaligned> <aligned>

<varying> <cardinal>, <fixed>, <float>,

<precision>, <range>

3.7.2 Required Attribute Set Members

A <data type> or <range> attribute is reguired.

Data

The arithmetic data type attributes <cardinal> and <fixed> require the

attribute <precision> or <range>; and the data type <float>

attribute <precision>.

requires the

The string data type attributes <bit> and <character> require the

attribute <length>.

The <constant> attribute requires the attribute <initial>.

3-19

i

R

B £ W

W g

Data

Storage allocation for a data item declared with the attribute
<unaligned> is not required to be aligned on specific boundaries.

3.6.22 Varying

Syntax:

<varying> ::= VARYING

An item declared with the attribute <varying> represents a strinc data
type whose length may vary after allocation and may be any value from zero to
a maximum of the <length> specified in the declaration.

3.7 Data Attribute Sets

The description of each <attribute> is given independently of cther
members of the <attribute set>. A particular <attribute> may conflict with
another <attribute> such that they cannot belong to the same <attribute set>.
Alternatively, there are some <attribute>s that require a particular
<attribute> in the same <attribute set>. These conflicting or reguired
<attribute>s are specified in 3.7.1 and 3.7.2. Defaults exist for certain
<attributed>s in an <attribute set>. The defaults are specified in section
373

3.7.1 Conflicting Attribute Set Members

The table below indicates, in the row direction, all <attribute>s which
conflict with the <attribute> in the column on the left.

3-18

Data References and Expressions

-

4

g

¥
L3

Data

<low value> ::= <cvi expression>
<high value> ::= <cvi expression>
<scale> ::= <cvi expression>

A name declared with the range attribute specifies an enumeration of
fixed-point values and has two uses. One is in declaring the range of values
for fixed-point data items, 1i.e. either <range> or <precision> can be
written. In this context the optional parameter <scale> is allowed.

The other use of <range> is to specify a name for a set of values in any
context where it is meaningful such as in a <case prefix> or as a subscript
to select a cross-section of an array. In this usage the <declared name>
does not have <data type>.

The expressions for <low value> and <high value> are integers defining
the limits of the closed interval of values.

In the context of precision for fixed-point variables, the <scale>

parameter indicates the minimum significance required in computations; the
<scale factor> to be used is CEIL(3.32*v) where v is the value of <scale>.

3.6.20 Static

Syntax:

<static> ::= STATIC

A variable declared with the attribute <static> is a variable which has
storage allocated at or before the time that the variable is first
referenced. The variable remains allocated until termination of the
<program>.

All <extent> expressions and <initial> attributes for static varialbes

must be constant valued since the variables may be allocated prior to
exeuction of their containing block.

3.6.21 Unaligned

Syntax:

<unaligned> ::= UNALIGNED

3-17

AR,

A

Data

3.6.17 Memory

Syntax:

<memory> ::= MEMORY(<memory type>)
<memory type> ::= MDA | MAIN

The <memory> attribute specifies the type of memory in which storage for
the <declaration component> will be allocated. The <merory type> MDA will
cause allocation to be in the multi-dimensional access, or array, memory. The
<memory type> MAIN will cause allocation to be in the main, or control
memory.

3.6.18 Precision

Syntax:

<precision> ::= (<numker of digits>

[, <scale factor>])
<nurber of digits> ::= <cvi expression>
<scale factor> ::= [+|=] <cvi expression>

The <precision> attribute specifies the precision of arithmetic data
types. For cardinal or fixed-point data, the <precision> attribute specifies
the number of bits sufficient to express the magnitude of the values. For
floating-point data, <precision> specifies the number of bits in the
magnitude of the mantissa.

The <scale factor> specifies the position of the assumed binary point
for fixed-point data. The point is located to the left of the rightmost bit
when the <scale factor> is positive and to the right of the rightmost bit
when the <scale factor> is negative. If the <scale factor> of a data item
with the <fixed> attribute is zero or 1is omitted, the data item is &
fixed-point integer. If <scale factor> is present, the data item must have
the attribute <fixed>.

3.6.19 Range
Syntax:
<range> ::= RANGE (<low value>

: <high value> [, <scale>])

3-16

-

TN SRR

-

Data

3.6.14 Float

Syntax:
<float> ::= FLCAT

A data item declared with the attribute <float> represents a
floating-point arithmetic value. The <precision> attribute without a "scale
factor" is required for floating-point data.

3.6.15 1Initial

Syntax:

<initial> ::= INITIAL <initial list>
<initial list> ::= (<initial item>

[,<initial item}...)
<initial item> ::= [<factor>]<initial value>
<factor> ::= (<cvi expression>)
<initial value> ::= [+|-] <literal constant>

The <initial> attribute specifies a set of scalar values that are
assigned in order to the scalar components of the declared variables. The
number of scalar values given in the <initial list> must be egual to the
number of scalar components in the <declaration component> with the <initial>

attribute. A name that appears in a <parameter list> may not have the
<initial> attribute.

3.6.16 Length

Syntax:

<length> ::= (<string length>)
<string length> ::= <cvi expression> | *

The <length> attribute specifies the length of string data types. For
bit-string data, <length> is the number of contiguous bits in the string. For
character-string data, <length> is the number of contiguous characters in the
string. The <cvi expression> must be greater than zero.

The <string length> may be an asterisk only for names which appear as

parameters in a <parameter list> of a <procedure> in which the name is
declared.

3-15

N SRRy - WY e
T oo s peinpds s

(5 SR T G

—
- "

p—_——

B T i = Ja T A

kA

- _4-q--qu-uuluulllIlnulnl-llIl!lllllIlllllllllllllllllllllllllluul|

Data

The <dimension> attribute specifies the extents of the dimensions for
data organized as an array or array of structures. If one <extent> is given
it represents the upper bound of a one dimensional array. If two or three
<extent>s are given they represent the upper bounds of each dimension of two
or three dimensional arrays, respectively. Any <extent> written as an
<expression> must evaluate to a fixed-point integer. The lower bound for all

dimensions is one.

The <extent> may be an asterisk only for names which appear as
parameters in the <parameter list> of the <procedure> in which the name is
declared. In this case all <extent>s must be written as asterisks. If the
<extent> of a parameter is not an asterisk, it must be constant, a

<cvi expression>.

If the keyword DIMENSION is omitted, <dimension> must be the first
<attribute> in the <attribute set>.

3.6.11 Entry

An item declared with the attribute <entry> represents entry values.
Data of type entry and further entry attributes are specified in section 5.3.

3.6.12 External

Syntax:
<external> ::= EXTERNAL

L name declared with the attribute <external> has external scope. The
name is known for the scope of the declaration and in all <block>s which have
the same name declared with the <external> attribute.

3.6.13 Fixed

Syntax:
<fixed> ::= FIXLD

A data item declared with the attribute <fixed> represents a fixed-point
arithmetic value. The <precision> attribute is required for fixea-point data.

3-14

e |

-

P S

&
v
T

Data

A name declared with the <constant> attribute is a named constant.
Named constants cannot be assigned values during program execution. The
<initial> attribute is required to assign a value to the named constant.

A named constant may be used in a <cvi expression> (section 4.3.2).

3.6.8 Controlled

Syntax:

<controlled> ::= CONTROLLED

A name declared with the attribute <controlled> is a variable which has
storage allocated when an <allocate statement> that identifies the controlled
variable 1is executed. The storage for a controlled variable is freed when a

<free statement> that identifies the controlled variable is executed.

Only one allocation can exist at any time. See the ALIOCATION
builtin-function for the ability to test whether an allocation exists.

3.6.9 Defined

Syntax:
<defined attribute> ::= DEFINED <base reference>
<base reference> ::= (<base reference>)

A variable declared with the <defined attribute> is a variable whose
generation of storage is identified by the <base reference>. Refer to
section 3.3.6 for a discussion of the use of defined variables.

3.6.13 Dimension
Syntax:
<dimension> ::= [DIMENSION]

(<extent> [,<extent> [,<extent>]])
<extent> ::= <expression> | *

3-13

W RTINS TRGERAT

!
e
%

3.6.4 Builtin

Syntax:

<builtin> ::= BUILTIN

A name declared with the attribute <builtin> is a builtin-function ana
must match one of the function names given in section 4.7. This attribute

allows redeclaration within an inner procedure block of a name that has been
used as a program name in a containing block. The latter is possible since

builtin-function names are not reserved words.
3.6.5 Cardinal

Syntax:
<cardinal> ::= CARDINAL

A data item declared with the attribute <cardinal> represents a cardinal
arithmetic value. The <precision> or <range> attribute is reguired for

cardinal data.
3.6.6 Character

Syntax:
<character> ::= CHARACTER

A data iter declared with the attribute <character> represents &
character-string value. The <length> attribute is reguired for

character-string data.
3.6.7 Constant

Syntax:
<constant> ::= CONSTANT

3-12

e SRR

W ATV RGN,

it

2 Y

w

Data

A data item declared with the attribute <aligned> is allocated storage
beginning on a boundary determined from the <boundary>.

when <boundary> is BYTE, storage is allocated beginning on byte (& kit)
boundaries. When <bounadary> is HALFWORD, storage is allocated beginning on
halfword (l¢ tit) bouncaries. w.en <bouncery> is wCFLC, storage is allocated
beginning on word (32 bit) bounaaries. When <boundary> is <cvi expression>,
the value of 2 raised to the value of <cvi expression> determines the bit
boundary for the beginning cf allocation. The <cvi expression> must have a
value greater than zero. An n-bit boundary occurs at bit positions which are
positive, integer multiples of n.

3.6.2 Automatic

Syntax:

<autormatic> ::= AUTOMATIC

A name declared in a given <block> scope with the attribute <automatic>
is a variable which has storage allocated each time the given <block> is

entered. The storage for an automatic variable is freed when the given
<block> is deactivated.

The <extent> expressions and <initial> attribute of an automatic
variable can contain <expression>s; the values are computed upon block
activation. A value is computable on block activation if it can be evaluated

without referencing any automatic, controlled, or defined variable declared
in the <block>.

3.6.3 Bit

Syntax:

<bit> ::= BIT

A data item declarea with the attribure <bit> represents a bit-string
value. The <length> attribute is required for bit-string data.

3-11

Data

must be followed by a <declaration component> with a <level> greater than
one. If a <declaration component> has a level greater than one, it must be a
mermber of a structure.

A given <attribute> can occur only once in an <attribute set>.
3.5.2.1 Declaration of Scalars

A scalar data item is declared by a <declaration component> with a
<declared name> that does not have a <dimension> attribute in its

<attribute set>, and that is not a main structure or a nested structure.

3.5.2.2 Declaration of Arrays

§ . An array data item is declared by a <declaration component> with a
- <declared name> that includes a <dimension> attribute in its <attribute set>,
% and that is not a main structure or a nested structure. |

3.5.2.3 Declaration of Structures

A structure data item is declared by a <declaration component> that does
not have a <dimension> attribute, and that has a <level>, and is followed by
a <ceclaration component> in the same <declare statement> with a <level>
L greater than the current <declaration component>.

§ 3.5.2.4 Declaration of Arrays of Structures
An array of structures data item is declared by a

; <declaration component> that includes a <dimension> attribute in its
<attribute set> and iz a main or nested structure.

3.6 The Data Attributes

The declaration of a data item includes an <attribute set> to specify
properties of the item. The data attributes which may appear in an
<attribute set> of a <declare statement> are specified in this section.

3.6.1 Aligned

Syntax:
<aligned> ::= ALICNED (<boundary>)

<boundary> ::= BYTE | HALFWORC | WCRD
| <cvi expression>

3-1¢

b feu S ¥ W e LU AR

b]

-

T L AT L

LW

Data

All declarations of a name with the <external> attribute must have an
identical set of attributes.

3.5.2 The Declare Statement

Syntax:

<declare statement> ::= DECLARE <declaration component>
[, <declaration component>]...;
<declaration component> ::= [<level>] <declared name>
[<attribute set>]
| [<level>]
(<factored name> [, <factored name> J...)
[<attribute set>]

<level> ::= <decimal integer>
<factored name> ::= <declared name> [<dimension>]
<declared name> ::= <identifier>
<attribute set> ::= <attribute> [<attribute>]...
<attribute> ::= <data type> | <storage class>

| <alignment> | <initial>

| <constant> | <dimension>

| <external> | <defined attribute>
<data type> ::= <arithmetic> | <string>

| <entry> | <file>

| <builtin>
<arithmetic> ::= <float> <precision>

{ <cardinal> | <fixed> }
{ <precision> | <range> }

<string> ::= { <bit> | <character> }

{ <length> [<varying>]

| <varying> <length> }
<storage class> ::= <automatic> | <controlled>

| <static>
<alignment> ::= <aligned> | <unaligned>
| <memory>

The syntax of all <attribute>s except entry and file is given in section
3.6 and the syntax of entry and file <attributeds is given in sections 5 and

8.

Factoring may be applied to <declared name>s hav1ng <attribute set>s
which differ only in the <dimension> attribute.

The optional <level> is used when declaring a structure or array of
structures. If a <declaration component> has a level of one, the
<declared name> is the name of a main structure. The <declaration component>

J=9

aar

AR

-,

e

Data

3.4.2 Memory Prope%ties

A machine dependent attribute of data is <memory>, which specifies the
type of memory where the data item will be allocated. STARA! has two
separately addresssed memory systems. The main memory address space is used
primarily for storage of scalar data, and small arrays or structures (or
those not referenced often). The multi-dimensional access (MDA) memory is
used primarily for storage of arrays and structures. Many array operations
take place most efficiently on data stored in the MDA memory.

3.4.3 Storage of Arrays

Arrays of data may be stored in the main memory or the STARAN MDA
memory. The means of addressing the two memory types are distinct from each
other. Thus the organization of data in relation to the memory in which the
data is stored may effect performance.

3.4.4 Connected Storage

Arrays are allocated in connected or unconnected storage. A connected
array is one in which all elements of the array are adjacent to one another
according to a particular means of referencing the array. An unconnected
array is one in which elements of the array are separated from one another by
other values.

An unconnected array exists as an array of structures or as a result of
certain references to portions of the array as described in section 4.2.

3.5 Declarations

Scalar, array, structure, array of structures, entry and file data are
given names. The attributes associated with a name are specified by the
declaration of the name. All program names must be declared; builtin-function
names do not need to be declared.

3.5.1 Scope of a Declaration

The scope of a declared name is the <block> in which the name is
declared and all contained <block>s in which the name is not redeclared.

A name can be declared only once in a given <block>. The name is known
only for the scope of the declaration unless the <external> attribute is
included in the declaration. A name declared with the <external> attribute is
known in all <block>s in which the same name is declared with the <external>
attribute and in all contained <block>s in which the name is not redeclared.

3-8

P e i e

'S a.' 4""0.'. Sl Y 5 e

o

LT

-

I TGRS T

i BN

Data

Example:

declare XX (4, 4);
declare Y(4) defined (XX{1lsub, 1lsub));

The array Y is a four element array whose elements constitute the diagonal of
the array XX. A <reference> to Y[K] 1is equivalent to a <reference> to
XX[K, K].

An unsubscripted <reference> to an i-sub defined array is equivalent to
a cross-section <reference> in which all <subscript>s are asterisks. In the
example above, a <reference> to Y is equivalent to a <reference)> to Y[*]
which is equivalent to a <reference> to the array formed by the elements
xx{1, 1], xx(2, 2], and XX[3, 3]. In this example, Y is always in
unconnected storage.

The data type, alignment <attribute>s, and string <length> of the
defined array must be identical to the corresponding <attribute>s of the base
array. If the defined variable is a structure, the structuring of the
defined variable and the base variable must be identical, and the data types,
alignment <attributeds, and extents of all members of the defined variable
must be identical to those of its corresponding member in the base structure.

3.4 Data Storage

3.4.1 Storage Classes

The storage class determines the times at which data items are allocated
or freed and thus it determines the lifetime for values of the data items.
The mutually exclusive storage <class attributes are <automatic>,
<controlled>, and <static>. Allocation occurs upon <block> entry, execution
of the ALLOCATE statement, and at the beginning of <program> execution
respectively. The freeing of storage occurs at <block> exit, execution of
the corresponding FREE statement, and at the end of <program> execution
respectively.

A variable is a member of the storage class corresponding to its
declared storage class attribute. Storage for a component of a structure 1is
allocated or freed when its containing main structure is allocated or freed.
The storage class attributes are defined further in section 3.6.

Jr— T ——————

Data References and Expressions

4.4.1.2.2 1Infix Operations
If both operands are floating-point wvalues, the result is a

floating-point value with precision egual to the greater of the precisions of
the two operands.

If the operands are fixed-point values, the result type may be either
fixed-point or floating-point and depends on both the operator and the
converted operands as described by the following:

Notations:

Let N be 63 (maximur floating-point precision, implementation defined,
radix is binary).

Let (p,g) be the precision of the first operand, and
(r,s) be the precision of the second operand.

In principle the precision and scale are the minimum values that .will
contain the actual value without loss of significant bits.

Addition or subtraction operator (+ =).

¥ The result is a fixed-point value whose precision is:
: i (min (N, max(p-g, r-s) + max(qg,s) + 1),
max (q,s)) .
9
; The wvalue of the result is the algebraic sum or the difference of the
i two operancs.
{ Multiplication operator (*).

The result is a fixed-point value whose precision is:
(min(N, p+r+l), agt+s)

$ The value of the result is the algebraic product of the two operands.
f Division operator (/).
;_ The result is a fixed-point value whose precision is given by:
3 { (5, N=p+q-s)
The value of the result is the algebraic quotient of the first operand
divided by the second. 1If the quotient exceeds the precision of the

result, the least significant digits of the quotient are truncatea to
form the result. Note that the result always has the maximum precision

4-20 j

R AR 27 LA

pr-

L A T L TR 4 = WGk : B e

-

b T2

Data References and Expressions

The precision of the two operands may differ without requiring any
conversion. If a conversion built-in function is used to overcome a
difference in type, the precision ¢of the converted operand is given by
the rules in section 4.5.

Example:
declare A character(5), B fixed (31, 0);
... = fixed(d) + B;

In this example, A 1is converted to a fixed-point quantity of
precision(l6, 8); large enough to hold any 5 digit decimal integer. The
target type for the addition is fixed-point. The operand B is not converted
because it already has the target attribute <fixed>.

4.4.1.2 Arithmetic Operator Results

The operands are converted (possibly wusing built-in functions) and
evaluated, then the operation is performed. The result is an arithmetic
value whose type and precision are determined by the converted operands and
the operator as described in the following sections.

The precision rules of "fixed-point" operations are such that no high
order digits (bits) of the true arithmetic result are lost. Unless the
operation is division or the result precision has reached the limits of the
machine-system(N), no low order digits of the true arithmetic result are
lost. 1In the latter case, the precision rules given below indicate exactly
when low order digits are lost.

A floating-point result of precision(p), always binary, contains the
most significant (n) bits of the true arithmetic result, where n is
implementation defined, is greater than or equal to p, and is a maximum of
71‘

when the final result of the evaluation of an <expression> 1is assigned
to a variable or to a generation of storage to be passed (by value) as an
argument, as many as n significant digits are stored if the target is
unpacked (aligned) and of significant precision, but p significant digits are
stored if the target is packed(unaligned). In the truncation case, excess
low order digits are truncated.

4.4.1.2.1 Prefix Operations

The two prefix operators, plus and minus, produce a result having the
type and precision of the single operand. The value of the result of a rplus
operator is the value of the operand. The value of the result of a minus
operator is the algebraic negative of the operand value.

TN RNTALE TR,

-

J N i oy

Data References and Expressionc

program. It can be referenced in any context that requires constant-valued
integers.

Syntax:
<cvi expression> ::= <expression>

A <cvi expression> can be a name declared with only the <range>
attribute; no <data type> ic needed. In such a declaration it then
represents the set of integer values defined with the name. Alternatively,
the <cvi expression> can be any expression which is made up of only
constant-valued integer oeperands.

A <cvi expression> can be referenced in any context that reguires
constant-valuec integers.
4.4 Operators
4.4.1 Arithmetic Operators

The prefix arithmetic operators are:

+ plus
- minus

The infix arithmetic operators are:

adu
subtract
multiply
divide

* exponentiation

*N % |+

4.4.1.1 Arithmetic Operands Operator

The operands for arithmetic operators must both be arithmetic. The

conversion rules are given in section 4.5, and the target attribute set for
the conversions is:

1. If one operand has the attribute <fixed> and the other is <cardinal>,
the latter operand is converted to <fixed> precision (r,2) where r is
the maximum of the two precisions.

2. In all other cases, the operands must be explicitly converted to a
cormon arithmetic type using a built-in function.

4-18

"—w~———~'--l=L*h”. o T —

B

Cata References and Expressions

Order of Evaluation.
4.3.1 General Expressions

Syntax:

<expression> ::= <expression one>
| <expression> | <expression one>

<expression one> ::= <expression two>
| <expression one> & <expression twod

<expression two> ::= <expression three>

| <expression three> <relational> <expression three>
<relational> ::== | "= | < | "<l <= | > > | >=
<expression three> ::= <expression four>

| <expression three> || <expression four>

<expression four> ::= <expression five>
| <expression four> { + | - } <expression five>

<expression five> ::= <expression six>
| <expression five> { * | / } <expression six>

<expression six> ::= <basic expression>
| <simple expression>
| <parenthesized expression> | <expression seven>

<expression seven> ::= { <basic expression>
| <parenthesized expression> }
** {expression Six>
<simple expression> ::= {+ | - | ~} <expression six>

<parenthesized expression> ::= (<expression>)

<basic expression> ::= <reference>
| <literal constant> | <i-sub>

4.3.2 Constant-valued Expressions

A constant-valued expression 1is any expression which

involves only
constant integer

operands and can be evaluated before any execution of the

4-17

-

-ty

P TN TR,

v

NS R i i et As—

Data References and Expressions

the parameter is associated with an argument, and holds only for the time the
parameter remains associatea with the argument.

1If a perameter 1is declared with (only) constant extents, the

corresponding argument must have identical constant extents to match the
parameter.

In determining whether an argument is to be passed by-value or
by-reference, an asterisk extent is considered to "match" any extent of the
argurent (see 4.2.8.2). A dimensioned parameter that could correspond to an
array argument in unconnected storage must be declared with asterisk bounds.

4.2.9 Function Reference Reducibility

An entry s a reducible function under the following circumstances:

@ Each invocation of an entry invokes only
reducible functions.

@ Each invocation of an entry returns a value
that depends only on the values of the
arguments passed to that invocation.

® Each invocation of an entry produces no
side-effects.

Any entry that is not reducible is irreducible. Note that a side-effect is
any change in the value of any item outside of the invoked entry or any of
its dynamic descendents.

The order of evaluation of <referenced>s to irreducible functions is not
definec during the evaluation of <expression>s, but all the function
<reference>s are evaluated. A <reference> to a reducible function may be
evaluated before the statement in which it is written is executed, but a
<reference> to an irreducible entry is always evaluated during execution of
the statement in which it is written.

See section 4.1 for order ot evaluation in <expression>s and section 5.3
for the gefinition of the <reducible attribute> and <irreducible attribute>.

4.3 Formal Syntax of Expressions

This section defines the expressions, and the order of evaluation of
operators contained in <expression>s (thus the precedence). The evaluation
of operands in <basic expression>s may differ from the order for operations
as expressed by these syntax rules according to the rules of section 4.1.4,

4-16

L T i B iy o A i e .

e d

Data References and Expressions

4.2.6.2 Matching Attributes for By-reference Passing

In procedure invocations, the attributes of a <reference> written as an
argument must match those of the corresponding parameter in order to achieve
passing the argument by-reference. If the attributes do not match, the
arguments are either passed by-value or the program is in error.

The following rules also apply:

If a parameter is an aggregate (structure or array), it matches an
aggregate argument with elements that match the corresponding elements
of the parameter. It also matches a scalar argument if the latter can
be promoted as specified in section 4.6.

If a parameter is a scalar, the <fixed>, <float>, <ktiv>,
<character>, <entry>, <file>, <varying>, <alignec>, <unaligned>, and
<memory> attributes must match.

3 If & parameter is arithmetic, the <precision> attribtute of the
ctarameter nust be * or nave the same value as the argument <precision>.
Irzlicit conversion is allowed between types <fixed> and <cardinal> as
defined in section 4.5.

If a parameter is an entry variakle, it matches an argument which
, is an expression with type <entry>. The <oarameter description listd
4 is not matched.

If the parameter is an array, the <dimencsion)> attribute of the
parameter must have all *-extents or have the same values as the array
argument., The array parameter can match a scalar argument if the latter
can be promoted as specifiea in section 4.6. An array in unconnectead
storage (cross-section or "&" subscript reference) cannot be passed as
an arguaent to an array parameter declared with constant extents.

-

4.2.8.3 Promotion and Conversion of Arguments

As specified in the previous section, the evaluation of an argument to
be passed by-value may include promotion and/or conversion. If the only
defined promotions or conversions will not allow the argument to conform to
R . the parameter, then the program is invalid and in error. Refer to sections

' 4.5 ana 4.6 for definition of conversions and promotions respectively.

g 4.2.8.4 Extents of Parameters

P L

An array or string paraneter may be declared with either
<cvi expression> (constant) or asterisk extents. For a parameter declared
with asterisk extents, the unspecified extents are given the values of the
corresponding argument extents; this assignment of extents occurs each time

o
*70n

AL

4-15

T

Data References and Expressions

e

=y gon
TP

Py S WA

- e

Data References ancé Expressionc

4.2.7 Built-in Function References

In addition to function references to user written procedures, &
function reference can invoke one of the set of built-in functions. Thnis set
is an intrinsic part of the language and provides operations that either
cannot be expressed or are not usually expressed as infix or prefix
operations. The identifiers used for the built-in function names are not
reserved. Any of the identifiers can be declared for other items anc, if
necessary, redeclared as built-in functions in an inner block by use of the
<builtin> attribute. A built-in function name does not have an entry-value
and must not be written in a context that requires an entry value. The
complete list of functions and their specification is in section 4.7.

4.2.8 Parameters.and Arguments

As shown in the syntax, an argument is an <expression> in the
<argument list> of a <call statement> or <function reference>. A parameter
is a name declared in the procedure and used by the latter to reference an
argument. The correspondance between an argument and a parameter is by
position in the respective lists and exists until the block activation that
established the correspondance is ended by a return.

The scope of a parameter is internal to the <block> in which the name
appears as a parameter, and the generation of storage associated with a
parameter is supplied by its corresponding argument. A parameter cannot have
an <initial> attribute.

A reference to a parameter is in error if there is no argurment
associated with the parameter. This erroneous reference could only occur in
a <procedure> containing one or more <routine statement>s.

4.2.8.1 Argument Passing By-value or By-reference

Arguments may be passed in two manners, by-value and by-reference. For
passing by-value, the argument is evaluated and assigned to a new generation
of storage in the invoking <procedure>. The new generation of storage is
then associatec with the parameter. For passing by-reference, the arguemnt's
generation of storage is associated with the parameter; the argument and
parameter share one generation of storage. If an argument 1is passec
by-value, any assignment of wvalues to the corresponding parameter do not
access or change the value of the argument.

In order to be passed by-reference, an argument must be both readable
and writeable; thus a <reference> enclosed in parentheses acs a
sub-expression, a <literal constant>, or a <reference> to a variable with the
attribute <constant> is always passed by-value.

4-14

Data References and Expressions

® The reference is a complete qualification of
only one declaration of the name.

The reference in either case is to the declared name. In any other case the
reference is ambiguous and in error.

The form of any <subscrpit> lists or <argument list>s does not affect
the resolution of <reference>s.

4.2.6 Function Reference

The syntax of a <function reference> differs from that of a
<subscripted reference>.

Syntax:

<function reference> ::= <entry reference>

[<argument list>]
<entry reference> ::= <reference>
<argument list> ::= ([<arguments>])
<arguments> ::= <expression> [, <expression>]...

The <entry reference> is required to yield a scalar entry value. A
<function reference> is distinguished from a <reference> to an entry value by
the presence of an <argument list>. The <argument list> is must be empty if
the entry has no

parameters. The evaluation of a <function reference> results in the
invocation of an entry value. The value of the <function reference> is the
value returned by the invoked entry.

Examples:
declare F_NO_ARGS entry() returns(fixed(1l5, 2));
declare F1_ARG entry (fixed (15, @)) returns (bit(1));
A <reference> to F_NO _ARGS is not a <function reference>, but is a

- <reference> to the entry_bf F_NO_ARGS. A <function reference> to the value
returned by the invocation of F_NO_ARGS would be written as F_NO_ARGS().

e

A <reference> to the entry value of F1_ARG is written as Fl_ARG and a
<function reference> to F1_ARG is written as F1_ARG(K).

& 4-13 i

R Tie A Y T T A

e T

Data References and Expressions

Example:
declare 1 LIST(3),
20NEXTY see o
2 DATA(4);

The items LIST and NEXT are one-dimensional arrays and a

<subscripted reference> must contain one <subscript>. A
<subscripted reference> to DATA or LIST.DATA must have two <subscript>s since

it has a dimension of two.

Cross-sections of these arrays may be referenced as follows:

Example:
declare 1 LIST(3),

2 NEXT cardinal(16) ,
2 DATA(4) bit(8);

declare 1 TAE,
2 ELEMENTS (5) bit(8);

The following are all valid cross-section <reference>s:

LIST|[K] .DATA[*] LIST[*] .DATA[*] LIST[*] .NEXT
LIST[*] TAE .ELEMENTS [*]

The following is an invalid reference:

LIST.NEXT[...]

4.2.5 Qualified Reference Resolution

A qualified reference to a name applies to the valid declaration of the
structure identifier declared in the innermost block containing the
reference. A valid declaration is one of a structure <member> in which some
or all of the containing structures have the same names and (hierarchical)
order as the <containing reference>s of the subject reference.

Within this block of declaration, the reference is unambiguous if either
of the following holds:

@ The reference is a valid gualification for
exactly one declaration of the name.

4-12

B ——_———

Data References and Expressions

data and to section 3.6 for a description of structure declarations.

Syntax:

<qualified reference> ::= <containing reference>
[. <containing reference>]...
. <member reference>
<containing reference> ::=<simple reference>
| <subscripted reference>
<member reference> ::= <simple reference>
| <subscripted reference>

| <function reference>
Examples:
K.L.M
i R.S.T[2, M]
NODE. ELEMENT

In a structure reference, the rightmost <reference> is the
<member reference> and it identifies the innermost item being referenced.

i It 1is contained within the structure identified by the immediately preceding
<containing reference>, which in turn 1is contained within the structure
‘ identified by the immediately preceding <containing reference>, etc.

The structure reference is fully gqualified 1if it has a
<containing reference> corresponding to each of its containing structures.
In order to be in a fully qualified <reference>, a name declared at level n
in a substructure must have n-1 <containing reference>s. A
i <simple reference> or simple <subscripted reference> to a name declared by a
1 level-one declaration is considered to be a fully gualified <reference> to
that name.

-t

A fully qualified <reference> is never ambiguous. A rightmost

<reference> is partially qualified if it has fewer <containing reference>s

5 tnan it has containing structures; a partially qualified reference can be
ambiguous.

The number of <subscript>s in a reference must always be the same as the
declared dimension of the referenced name including all dimensions inherited
from containing structure levels,

o az®
LN

Y

4-11

L

-

2
?
b

—

Data References and Exprescions i

<identifier> [& <expression>]

where <expression> is the value obtained at the time the IFARPAY wac 4
executed. In the context of IFARRAY...ELSE...& it is equivalent to »

<identifier> [~ (&<expression>)]
4.2.3.3 Selection by Subscript Range

Form: <first element> : <last element>

<first element> ::= <expression> 1
<last element> ::= <expression>

The elements selected are those in the given dimension with indices in
the range of the value of the expression <first element> through the value of
the expression <last element>.

The resultant reference is an unconnected array reference if any
subscript for a higher numbered dimension (a subcript toward the left) is a

<selector>. It 1is a connected array reference if each and every subscript,
if any, for higher numbered dimensions is an expression.

i Example:

i declare (A(20), B(20), C(22)) cardinal (16);
ifarray B[*] < A[*] then

i B[&] = A[&] + C[3 : dim(C)];

t endif;

i For each i-th element of B which is less than the ocorresponding (i-th)
1 element of A, assign the sum of A[i] and C[i+2].

4.2.4 Structure Qualification

A structure is a hierarchical collection of scalar variables, arrays,]
and structures. These do not need to be of the same data type nor have the |
same attributes. Because of the hierarchy, the name of a structure member |
(item) can have a scope that overlaps another declaration of the name. |

Structure qualification provides the facility to resolve ambiguity of |
<reference>s to these names. In structural qualification, the <reference> is |
qualified by <containing reference>s to one or more of its declared %
containing structures. Refer to section 3.3 for a discussion of structure

e
w2 la

3 ;
b
6

4-10

B
PP

e

-

Data References and Expressions

There are 3 forms of array selection qualification:
l. & <selection qualifier>
2. &
3. <first element> : <last element>
where each of these is an <expression)

All three are means of selecting a portion of an array in the dimension
corresponding to the position in which the <subscript> appears in the
<subscripted reference>. The portion of the array being selected is an
unconnected cross-section reference. The number of dimensions of the
reference is not reduced by these subscript forms.

4.2.3.1 Array Slice Selection

Form: & <selection qualifier>

The <selection qualifier> is a <reference> and must be an array of
bit-string values (usually "bit(1)"). If the extent of the

<selection qualifier> vector is not equal to the corresponding dimension of

the array reference, a copy of its value is extended to the extent of the
latter dimension value.

A list of values for the subscript is developed as follows:

If the bit string in element i of the bit-string array is "true" (not
all zero bits), the corresponding subscript has the value i added to the
list. If the bit string in element i of the bit-string array is "false"
(all zero bits), the subscript value i is not used in forming the 1list.

The resulting list of subscript values is used to seiect array elements

from the array; the number in a given dimension is equal to the number of
“true" values in the <selection qualifier> bit-string array.

If the array qualified by this form has only one dimension, then the
reference makes a vector referred to as a selection by bit-vector.

4.2.3.2 Special Selection in IFARRAY Context

Form: &

This <selector> form is allowed in the context of an <ifarray statement>
to select array elements based on the value of the <expression> in the
innermost containing <ifarray clause>. The reference

<identifier> [&]

in the context of IFARRAY...THEN...& is equivalent in meaning to

4-9

AR 0 M g

1
|
%

s arige) Sl e S

-

P = L

o KadN

.
¢

-
7
;
¥
L3

Data References and Expressions

asterisk. As for all array references, the number of subscripts in the list
must be equal to the dimension declared with the array name. If the j-th
subscript is an asterisk, the cross-section of the array includes all
elements covered by varying the j-th subscript in the interval closed by its
declared bounds. The dimensionality of the cross-section reference is equal

to the number of asterisks, k, in the subscript list.

1f all <subscript>s are asterisks, then this reference is eguivalent to
the name written without any subscripts; it is a reference to the entire

array.

A cross-section may be used anywhere that a reference to an array of
dimension k 1is required. In this document the word "array" should be

interpreted to include array values of cross-section <reference>s.

A reference to a cross-section of an array may be a reference to
elements which are not in contiguous storage; the elements are separated by
data items that are not part of the cross-section. Such unconnected arrays
cannot be passed by-reference as arguments to array parameters unless the
parameters have a declaration with an asterisk dimensions. In all other
contexts, a cross-section <reference> can be used wherever an array
<reference> could be. See section 3.4.3 for the discussion of connected

arrays.

Example:

declare I cardinal (16) ;
declare (K(&, 8), L(8, 4), M(8)) bit(l6) ;

K[I, *] = L{*, 2] + M[*];

The first assignment statement computes a vector of 8 values by adding
the values of the second column of L to the values of M and then
assigning the sums to the I-th row of K. Note that a <reference> to

M[*] is equivalent to a <reference> to M.

4.2.3 Selection Qualification

A <subscripted reference> containing one or more <selection qualifier>s
as subscripts is a cross-section reference to the array. It is a reference
to an unconnected array of elements selected by the one bits in the
bit-string <selection qualifier> from the array specified by the <reference>.

4-8

W AT NRACLTRT

a
)
.

Data References and Expressions

Any <reference> contained in a declaration of a name X 1is resolved in
the <block> that immediately contains the declaration of X, and is evaluated
when X is referenced or allocated. The <reference> is evaluated as if it
were referenced in the <block> that immediately contains the <reference> to
X, or in the <block> that caused the allocation of X.

4.2.1 Simple Reference
Syntax:

<simple reference> ::= <identifier>

The reference is to any <variable>; it may be a scalar, an array, or a
structure (including array of structures). A reference to a data item other

than a scalar is known as an aggregate value if the context requires its
value. |

o

4.2.2 Array Reference
Syntax:
<subscripted reference> ::=
<array reference> [<subscript>]
| <array reference>
[<subscript> { , <subscript> }...]

<array reference> ::= <simple reference>

<subscript> ::= <expression> | *
| <selector>

<selector> ::= & | & <selection qualifier>
| <first element> : <last element>

<selection qualifier> ::= <reference>

The number of <subscript> expressions must be the same as the number of
dimensions in the <dimension> attribute of the declaration of the name (see
3.6). The <expression>s used as a <subscript> are scalar values used as type
<fixed-point> or <cardinal> with integer values. Refer to section 3.3 for a
discussion of array data.

Cross-sections are an extension of the <subscripted reference>. A
cross-section of an array, when referenced by the array name followed by a
list of subscripts, is denoted when at least one of the subscripts is an

4-7

p———

R e O e T

e oS

Data References and Expressions

Syntax:
<reference> ::= <simple reference>
| <subscripted reference>
| <selected reference>
| <qualified reference>
| <function reference>

The semantics of a <reference> depends upon <reference>, the
<attribute>s of the declared name referred to, and upon the context and form
in which the <reference> occurs.

Evaluation of a <reference> that identifies a name without the
<constant> attribute either denotes a generation of storage of the variable,
the current value stored in the generation of storage of the variable, or an
identification of the variable's declaration.

A <reference> yields a value unless it occurs in one of the two forms of
contexts that follow:

In these contexts, a <reference> to a variable identifies only the
declaration of the variable:

® <allocate reference> for an <allocate statement>.
®@ argument to the built-in function "ALLOCATE".

In several contexts, the <reference> produces the complete description
of its generation of storage, which must be allocated, but not the value:

® assignment statement <target>.
B <index> in an <iterative loop> heading (DO-statement).
® free statement <reference>.

@ argument, passed by-reference, in a
<call statement> or <function reference>.

@ pseudo-variable <reference>.

® <reference> in an <in option>, <into option>,
<from option>, or <keyto option>.

In all other contexts, a <reference> accesses the value of the variable.
Both the generation of storage must be allocated, and a value must have been
previously assigned; otherwise the program is in error. The components of a

<reference> are evaluated in an unspecified order, and any program that
depends on a certain order is in error.

4-6

asn >

crloadi Ly

g

L IR

it g7 i < SR

i o i

S o

g e L Lo e i Bl L bt b S

——

W TR R

™

Data References and Expressions

cannot return.

Any <on unit> signalled during <expression> evaluation cannot access
variables that are assigned values by the interrupted expression or
containing statement. Similarly, the <on unit> cannot assign new values to
variables used by the interrupted statement with the expectation that the new
value will be used upon normal return from the <on unitd>.

Example:

on zerodivide ;

endon;
D=0;
X=1/D + 1/D;

In this example:
1. the value of X is not defined upon entry to the <on unit>.

2. 1if the <on unit> does a normal return the result of the program
is undefined and in error, regardless of whether or not the <on unit>
assigned a new value to L.

3. the number of times the zerodivide condition is signaled is not
defined, but it is signalled at least once.

4.2 References

References provide the means of access to all names declared in a
<program unit>. The value and/or storage of a variable, the value of a named
constant, or the value returned by a function are all represented in the text
of a <program unit> by a <reference> to a declared name. Refer to Section
3.5 for a discussion of declarations and the scope of a declaration.

A <reference> must be associated with a single declaration. A
<reference> is resolved by determining the declaration to which it refers;
resolution is described in section 4.2.5. A <reference> must be associated
with a single declaration. A <reference> is evaluated by locating the
generation of storage or value represented by the declared name. A

<reference> is resolved by the compiler and is evaluated during program
execution.

4-5

Data References and Expressions

The <expression> is the quantity to be converted to a character-string of
minimum length to represent the character equivalent value of the argument.
4.7.1:5 VEPIFY

The VERIFY built-in function will examine two given strings to verify
that each character in the first string is present in the second string.

Format :
VERIFY (<expression>, <expression>)

Both <expression>s must be either of type character-string, or of type
bit-string. The first <expression> is the source string and is compared
against the second <expression> to see if each element of the first exists in
the second. If each character of the source expression exists in the second,
this function returns a value of zero. If an examined character in the
source expression is not present, the index of that character is returned.

4.7.2 Arithmetic Built-in Functions
4.7.2.1 ABRS

The AES built-in function will determine the absclute value of a given
quantity ané return it to the point of reference.

3
; Format:
i
ABS(<expression>)
t The <expression> argument must be arithmetic, and the value returned by ADS
is the absoclute value of <expression>. If <expression> is an array or
) structure, then the abksolute value of each member is returned.
4.7.2.2 ADD
The ADD built-in function permits one to control the precision of an
addition operation.
Format:
ADD(<expression>, <expression>, <result precision>
[, <result scale>])
£ The first two <expressior> terms are arithmetic in type and are added
1 together according to the precision and scale specified by the last two
terms. The <result precision> specifies the precision, anc the
o <result scale>, when present, specifies the scale. Both <result precision>
% ana <result scale> are defined to be <cvi expressiond>s. If the type of the
#
b 4-3¢
5
¥
3

o

Data References and Expressions

Format:
SOME (<expression>)

he argument <expression> is an array of bit-strings. If the elements are
not bit-strings, they are converted to bit-strings. The scalar value
returned by this function is a bit-string of length one and whose bit value
is determined by the following rule: If any bit of any element in
<expression> is BE'l', then the result is B'l'; otherwise, the result is B'€’'.
4.7.1.12 STRING

This built-in function will concatenate all of the elements of an
aggregate variable into a single string element.

Format:

STRING(<reference>)
The <reference> 1is that of the aggregate variable whose elements are to be
converted to their common string type (character, unless all of the elements
of <reference> are of type bit-string).

4.7.1.13 SUBSTER

: The SUBSTR built-in function provides access to part of a specified
§ string.

Forimat:

- o

SUBSTR(<expression>, <expression> [, <expression>])

" The first <expression> term represents the string from which the substring
will be extracted. The second occurrence of <expression> is the index of the
starting point in <expression> of the desired substring. The third
occurrence of <expression>, if present, specifies the length (number cf bits
or characters) of the desired substring. If the third expression is nct
3 present, the substring extends through the ené of the string <expression>.

4.7.1.14 VARCHAR

The VARCHAR built-in function will convert a given value tc a varying
character-string.

Format:

e

VARCHAR (<expression>)

RETRELTR,

4-37

Rl

.

Data References and Expressions

R A I DR PP w—“—'—m

Data References and Expressions

The evaluation of <expression> specifiec the length of the string to be
formea.

4.7.1.8 INDEX

The INDEX built-in function determines if a specified bit-string or
character-string occurs within a specific string and, if so, its position
within the string.
Forinat:

INDEX (<expression>, <expression>)

The evaluation of both <expression>s must be of either type bit-string or of
type character-string. The first <expression> is the string to be searched,
and the second <expression> is the string configuration to be searched for.
The resultant value is zero or the position of the beginning of the first
occurrance of the second string <expression>.

4.7.1.9 LENGTH

The LENGTH built-in function finds the length of a given string value.
The value of the function is the number of bits in a bit-string or the nuiber

H f of characters in a character-string.
Format:
‘ LENGTH (<expression>)

{ The <expression> represents tne string whose length is determined.

4.7.1.1¢ LOw

The L[OW built-in function forms a character-string of a particular
1 length consisting of the lowest character in the collating seguence.

Format:
1 LOv. (<expression>)
§ ¢ The <expression> term specifies the length of the string to be formea.

4.7.1.11 SONE

The SOME built-in function tests the bits of a given bit-string array
and returns the result, in the form of an element bit-string, to the point of

o S0V b LI

invocation. The element bit-string indicates whether or not at least one of
the bits of the given array elements is set to E'l'.

&

3

L] 4-3%

Date References and Expressions

i Py

i s Le it
.

n ¥ S

Crgwe

-

Data References and Expressions

Format:
COLLATE

The value returned by this function is a character-string of length 256. The
characters are the 256 characters of the 8-bit ASCII code in the standard
collating sequence orgder.

4.7.1.5 cCopy

The CCPY built-in function will form a string consisting of a specified
numoer of repetitions of a given string.

Format:
COPY (<expression>, <expression>)

The evaluation of the first <expression> is of type string, and is the basis
from which the new string will be formed. The second <expression> specifies
the number of repetitions desired. The length of the result is the length of
the first <expression> string times the value of the second <expression>.

4.7.1.6 EVERY

The EVERY built-in function tests all bits of a given bit-string array
and returns the result, in the form of an elerent bit-string, to the point of
invocation. The element bit-string indicates whether or not the bits of
given array elements are all ones.

Format:

EVERY (<expression>)
The argument <expression> is an array of bit-strings. If the elements are
not bit strings, they are converted to bit-strings. The scalar value
returned by this function is a bit-string of length one whose bit value is
determined by the following rule: If the bits of all of the elements in
<expression> are B'l', then the result is B'l'; otherwise, the result is
B'g’.
4.7.1.7 HIGH

The HIGH built-in function will form a character string of a given
length from the highest character in the collating sequence.

Format:

EIGH(<expression)>)

4-35

Data References and Expressions

Data References and Exprescions

The FIXED <expression> wvalue is ~converted to decimal radix
representation. The precision of the <expression> is divided by 3.32 and the
smallest integer greater than or egual to the guotient is obtained. The
latter is the derived length and is used as the number of decimal digits for
the converted value. The derived length is then increased by two to allow
for sign and a decimal point.

(1) If the length of the source <expression> is equal to the specifiead
<result length> wvalue, or the <result length> term is omitted, then the
result is the converted value of <expression>.

(2) If the length of the source <expression> is less than the specified
<result length> value, the result is padded on the right with blanks to the
specified length.

(3) If the length of the source <expression> is greater than the
specified <result length> value, the STRINGSIZE condition is raised. For a
normal return, the result is truncated on the right to the specified length.

If the source is FLOAT:

The FLOAT <expression> value is converted to decimal scientific notation
according to the definition of a <floating-point constant>. The precision of
the <expression> is divided by 3.32 and the smallest integer greater than or
equal to the gquotient 1is obtained. The latter is used as the number of
decimal digits to represent the mantissa portion of the number; additional
characters are used as specified for a <floating-point constant>. The
exponent of the latter will contain two digits.

(1) If the length of the source <expression> is equal to the specifiea
<result length> value, or the <result length> term is omitted, then the
result is the converted value of <expression>.

(2) If the length of the source <expression> is less than the specifiec
<result length> value, the result is padded on the right with blanks to the
specified length.

ya

E (3) If the length of the source <expression> is greater than the
3 specified <result length> value, the STRINGSIZE condition is raised. For a
k. normal return, the result is truncated on the right to the specified length.

|

j 4.7.1.4 COLLATE

é The COLLATE built-in function returns the full ASCII character set in

P collating sequence order.

¢

¢

¥

&

4-34

Data References and Expressions

-ty

Data References and Expressions

(2) 1I1f the length of the source <expression> is less than the specified
<result length> value, then <expression> is padded on the right with blanks
to the specified length.

(3) 1If the length of the source <expression> 1is greater than the
specified <result length> value, the STRINGSIZE condition is raised. For a
normal return, <expression> is truncated on the right to the specified
length.

If the source is BIT:
(1) 1If the source <expression> is null, the result is null.

(2) If the precision of the source <expression> is equal to the
specified <result lengthd> value, or if the <result length> term is omitteq,
then the result is produced containing 8 and 1 characters in the same pattern
as the zero and one bits of the source <expression> value.

(3) If the precision of the source <expression> is less than the
specified <result length> value, then <expression> is padded on the right
with blanks to the specified length.

(4) If the precision of the source <expression> is greater than the
specified <result length> value, the STRINGSIZE condition is raised. For a
normal return, <expression> will be truncated on the right to the specified
length.

If the socurce is CARDINAL:

The CARDINAL <expression> value is converted to decimal radix
representation. The precision of the <expression> is divided by 3.32 and the
smallest integer greater than or egual to the guotient is obtained. The
latter is usea as the length in terms of the number of decimal digits for the
conver ted value.

(1) If the length of the source <expression> is egual to the specified
<result length> value, or the <result length> term is omitted, then the
result is the converted value of <expressiond.

(2) If the length of the source <expression> is less than the specified
<result length> value, the result is padded on the right with blanks to the
specified length.

(3) If the length of the source <expression> is greater than the
specified <result length> value, the STRINGSIZE condition is raised. For a
normal return, the result is truncated on the right to the specified length.

If the source is FIXED:

TN TR

W I

Data References and Expressions

(3) If the precision of the source <expression> 1is greater than the
specified <result length> value, raise the STRINGSIZE condition. For a
normal return, <expression> is converted as in case (1) and is truncated on
the right to the specified length.

4.7.1.2 BOOL

The PBOOL built-in function will produce a bit-string whose bit
representation is the result of a given Boolean operation on two given
bit-strings.

Format:
BOOL(<expression>, <expression>, <expression>)

The evaluation of the three <expression>s must be of type bit-string. The
first and second <expression>s are combined according to the Boolean
operation specified by the thirc <expression>. The thiré <expression> term is
a scalar bit-string of length four (4), selecting one of the sixteen
functions. The first two <exprescion>c may be arrays or structures. If so,
they obey the rules governing conformance and promotion (4.6) and the BOCL
function is performed upon each corresponding pair of elements.

4.7.1.3 CBARACTER

The CHARACTER built-in function converts a given value to a
character-string. This function allows the specification of the length of
the character-string result.

Format:
CHARACTER(<expression> [, <result length>])

The <expression> terin is the quanitity to be converted to a character-string.
The <result length>, when specified, 1is a cvi expression> or variable
<expression> denoting the 1length of the character-string result. If
<result length> is not constant, the resultant character <string has the
attribute VARYING. If it is not present, the length ic determined by the
conversion rules according to the attributes of the first <expression>.

The rules for conversion to CHARACTER depend on the type of the source
data. The rules follow:

If the source is CHARACTER:
(1) If the length of the source <expression> is equal to the specified

<result length> value, or if the <result length> term is omitted, then the
result is the value of the source <expression>.

4-32

Data References and Expressions

zeroes to the specified length.

(4) If the length of the source <expression> is greater than the
specified <result length> value, raise the STRINGSIZE condition. For a
normal return, <excression> will be truncatec on the right to the specifiec
length.

If the source is CHARACTER:
(1) If the source <expression> is the null string, the result is null.

(2) If the source <expression> contains only C or 1 characters anc its
length is equal to the specified <result length> value, then the converted
result 1is obtained as follows: The bit string result is produced containing
the samne pattern of zero and one bits as there are) and 1 characters in the
source <expression>.

(3) If <expression> contains only € or 1 characters and its length is
less than the specified length, then the result produced as in case (2) 1is
padced on the right with zeroes to the specified length.

(4) If <expression> contains only € or 1 characters, and its length is
greater than the specified <recult length> value, then the result produced as
in case (2) is truncated on the right to the specified length.

i (S5) Else, raise the CONVERSION condition for a character which 1is
neither a ¢ or 1.

I1f the source is FIXED:

; (1) The conversion is equivalent to converting the source <expression>
§ to CARCIWAL and then to BIT.

{ If the source is FLOAT:

i (1) The conversion is equivalent to converting the source <expression>
to FIXEL, then to CARDINAL, and finally to BIT.

If the source is CARDINAL:

1 (1) If the precision of the source <expression> matchec the specified
<result length> value, or the <result length> is omitted, then the result is

obtained as follows: The binary values of the cardinal's internal

representation are used as the bits of the resultant bit string.

T

% (2) If the precision of the source <expression> is less than the
. specified <result length> value, then the converted result obtained as in
case (1) is padded on the right with zeroes to the specified length.

AR,

4-31

e 1o

o

Data References and Expressions l

roftuirnaa 1ie Qi PP FPovenannlact 2ua cw = = R 4

Data References and Expressions

Ccs LOG2 SIN SORT
TAN

4. Array Built-in Functions.
i DIN SELECT SUM
5. Miscellaneous Built-in Functions.
ALLOCATION 1

The asterisk (*) notation on certain built-in functions denotes those
built-in functions that are essentially conversion functions.

4.7.1 String Built-in Functions

L The string built-in functions provide the user with the ability to
manipulate string values in a wide variety of ways.

4.7.1.1 BIT i

The BIT built-in function allows one to control the result of a
bit-string conversion, or to force conversion to bit-string.

i
‘ Format:

BIT(<expression> [, <result length>]) :
i The gquantity to be converted to bit-string is the source <expression> , and ;

the <result length>, when specified, gives the length of the result. The
§ <result length> term is defined to be a <cvi expression>. If the second
argument is omitted, the length is the <length> or <precicion> of the first
argument.

If the source <expression> is an array or structure, then the conversion
of each menber is returned.

The rules for conversion to BIT depend on the type of source data. The
rules follow:

If the source is BIT:

: (1) If the source <expression> is the null string the result is null.
i (2) If the length of the source <expression> matches the
<result length> wvalue, or the latter is omitted, the result value is the
value of the source <expression>.

(3) If the length of the source <expression> is lesc than the specified
<result length> value, the converted result 1is paddec on the right with

AL

4-30

W TP

»

[P ———— S ——

Data References and Expressions

2. Scalars are promoted to structures by forming a structure whose
members each have a copy of the scalar value.

st

3. Scalars are promoted to arrays of structures by forming an array of
structures whose scalar components each have a copy of the scalar value.

4. Structures are promoted to arrays of structures by forming an array

of structures whose array elements each have a copy of the structure
value.

A data item which is an array cannot be promoted to another aggregate
type.

it e St S 2

Example:
; declare (A[5], B[4], C[2, 2]) fixed(31, O);

\ In this example, there are no valid promotions between any pairs chosen from
A, E, and C.

4.7 Built-in Functions

§ These functions are defined as part of the lancuage and are shown in
five classifications.

1. String Built-in Functions.

; REIT BOOL *CHARACTER COLLATE |
copy EVERY HIGH INDEX
LENCTH LOW SOME STRING

4 SUBSTR *VARCHAR VERIFY

2. Arithmetic Built-in Functions.

AES ADD *CARDINAL CEIL
CIVIDE *FIXED *FLOAT FLOCR
} INDEX_FIRST INDEX MAX
INDEX_MIN INTERVAL;TEST MAX
I MIN MCD MULTIPLY PRECISION
f SUBTRACT TRUNC
i 4. Mathematical Built-in Functions.
4-29

P TIUN ATALLT

»
g

e

T

Ty

P

- e
X Li

R £ B

TN

-

-

Data References and Expressions

call SUBR(X);

In this example, the scalar arguitent x is promoted to a two-dimensional array
of one element whose value is x.

4.6.2 Types of Promotion

The language defines promotion for these four combinations of data
organization:

from scalar to array

from scalar to structure

from scalar to array of structures
from structure tc array of structures

The language does not define promotion from arrays to any aggregate
type, nor does it define promotion from structures to any aggregate type
other than arrays of structures.

The word promotion indicates a ranking of aogregate types, and the
promotion of the operands of infix operators utilizes this ranking. The
aggregate types are ranked as follows:

highest array of structures

equal array or structure
lowest scalar

There are four rules for promotion and they apply as shown here:

TO: array of structure array scalar
FROM: structures
array of = none none none
structures
structure (4) - none none
array none none - none
scalar (3) (2) (1) -

4.6.3 Promotion Rules

1. Scalars are promoted to arrays by forming an array whose elements
each have a copy of the scalar value.

4-28

g ———- o

-

e
at e

L e Al S

B

»

Data References and Expressions

4.6 Conformance of Aggregate Types

An aggregate type refers to the dimensionality, array-extents, and
structuring of a set of (scalar) values (defined in section 3.3). A value
conforms to an aggregate type if it has the dimensionality, array-extents and
structuring specified by the aggregate type. Wwhen a value does not conform
to the aagregate type required by the context in which the value appears, it
is promoted, if possible, as required by the context. If the promotion

required is not defined, the program is in error. The types of promotions
are defined in section 4.6.2.

4.6.1 Contexts That Force Promotion
Promotion is attempted in the following contexts:

1. The aggregate type of the value of the <expression> of an

<assignment statement> may be promoted to the aggregate type of the
<target> of the <assignment statement>.

2 The wvalue of an argument of a <function reference> or
<call statement> may be promoted to the aggregate type of the
corresponding <parameter descriptor> of the entry declaration.

3. The two operands of infix operators are promoted to the higher of
the aggregate types.

4. The value of a <return value> is promoted to conform to the
aggregate type specified by the <returns attribute> of the <entry>
definition in the <routine statement> in the or <procedure statement>
whose execution created the current block activation.

These contexts supply the dimensionality and structuring of the
resultant aggregate type. If a <parameter descriptor> or a
<returns descriptor> specifies asterisk array-extents, the resultant
aggregate has an array-extent of one in each dimension; otherwise, the

constant array-extents of the <parameter descriptor> or <returns descriptor>
supzly the array-extents of the result.

Example:

declare SUER entry((*,*) fixed(15, @));

4-27

-

et

s, Vil

Tl

W g

key:

"always"

n some (1]

Result Source

Type Type:

BIT
CARDINAL
FIXED
FLOAT
CHARACTER

IIlIlllllllllIllIlllIlllIlllllll!lHllIllllllllllllll!!!!!!!!!!!!!!!!!.

Data References and Expressions

meaning:

There are no error cases. These conversions
satisfy the ordering referred to above.

The source must have a value in the
range allowed by the resultant data
type, otherwise an error situation occurs
which can also raise a condition such
as SIZE, OVERFLOW, or CONVERSICI..

EIT CARDINAL FIXED FLOAT CHARACTER

- always
always =
always always
always always
always always

some some some
some some some

- some some
always - always
always always -

The conversion builtin functions and are more completely specified in

section 4.7.

4.5.2 Cardinal to Fixec

Any value of type <cardinal> may be assigned to a target of type <fixed>

with no loss of precision.
that of the <cardinal> expression value, if not the SIZE condition is

signallead.

4.5.3 Fixed to Cardinal

The conversion

The precision of the latter must be as large as

of values from <fixed> to <cardinal> is performed as

follows. If the value is negative or non-integral, the SIZE condition is
signalled. Otherwise, for
source <fixed> expression is assigned to the <target>.

non-negative integer values, the value of the

The precision of the <target> must be as large as that of the <fixed>

expression value

in order to retain all significance. If the precision of

the <target> is not adequate to hold the source expression value, the SIZE
condition is signalled.

4-26

Data References and Expressions

The comparison of bit-string values is performed by (effectively)
extending the shorter operand to the length of the longer operand (padding
the shorter on the right with zero bits). The two operands are then compared
bit-by-bit left-to-right with a zero bit comparing less than a one bit.,

Entry values compare equal only when they correspond to the same entry
and the same block activation record (see section 5.3).

File values compare equal only if they represent the same declared file
(constant) .

4.4.4.3 Relational Operator Results

_ Relaticnal operators compare the values of their operands and vyield a
E . bit-string of length 1. The value of the result is B'l1' if the relationship
' holds; otherwise, the value is B'@"'.

4.5 Conversions

The conversions defined for infix and prefix expressions are those
between the data types <fixed> and <cardinal>; these are implicit

conversions. All other conversions are caused by the explicit use of
conversion builtin functions.

4.5.1 Conversion Order

3
i

There 1is an implicit low to high hierarchy for conversions in the order
EIT, CARDINAL, FIXED, FLOAT, and CHARACTER

- in the sense that a one-to-one mapping of values is defined cnly in the
; ascending direction.

There are no conversions allowed for data types entry and file. The other
data types can be converted as summarized below:

28

Tt
S

M o AR 2 TN

4-25

-

?
e

Data References and Exprescsions
with the value of the second operana.

4.4.4 The Relational Operators
The relational operators consist of the complete set:

= equal (eguivalence)
not equal

less than

not less than

less than or egual
greater than

not greater than
greater than or egual

(]
]

LV A AN
v n A

4.4.4.1 Operanas for Relational Operators

Comparison is performec between values of the same data type. If the
operands are of different types, they must be converted as follows:

g If either operand is arithmetic, the operand which is not
arithmetic must be converted by explicit use of the FIXED,
CARCINAL, or FLOAT built-in function.

® If one operand is a bit-string and the other ic a character-gtring,
convert the former (using the CHARACTER built-in functicn) to a
character-string whose lenath is that of the bit-string.

All conversions are performed according to the rules given in

section 4.5.
4.4.4.2 Types of Comparison

The non-ecuality operators are defined for all data tyves.

Character-string, bit-string, and arithmetic values may be compared
using any of the relational operators. Since there is no ordering defined,
entry and file values can only be compared using the egual operators.

Arithmetic values are compared algebraically.

The comparison of character-string values is performed by (effectively)
extending the shorter operand to the length of the longer operand (padding
the shorter on the right with blank characters). The twc strings are then

compared character-by-character left-to-right using the ASCII collating
seguence.

4-24

AR T,

vy

¥
3

Data References and Expressions

4.4.2.2 Bit-string Infix-operator Results

For bit-string infix operators the result length is the maximum of the
lengths of the two operands. If the operands are of different lengths, the
shorter operand is effectively padded on the right with zero bits to the
length of the longer operand.

The operations are performed on a bit-by-bit basis. Each bit of the
result is developed by performing the indicated logical operation on the
corresponding bits of the two operands. The following defines the logical
operations for a given bit pair.

X y XxAndy xOry Notx
| | | | [I
Fea e e 0 T
4T O (] S [O S [e s
I e R S | 8 |
AT |1 | R | [N O
I | I | | |

4.4.3 The String Operator

The string operator is concatenation and is denoted by |l. It is an
infix operator that yields a string value of either type bit or character.

If both operands are bit-strings, no conversion is needed and the result
is a bit-string; otherwise, the result 1is a character-string and both
operands must be (explicitly) converted to character-strings according to the
rules given in section 4.5. The lenaths of the converted operands are
determined by one of the following rules:

® An arithmetic operand must be converted (using the CHARACTER or VARCHAR
built-in function) to character-string with length chosen according to
the conversion rules for that arithmetic tyoe.

® A bit-string operand must be converted (using the CHARACTER or VARCHAR

built-in function) to a character-string whose length is at least that
of the bit-string.

The result is a string whose type is the common string type of the
operands, and whose length 1is the sum of the lengths of the operands. If
either operand has the <varying> attribute, the result will also have it.

The value of the result is the value of the first operand concatenated

4-23

Data References and Exprescions

conditions result {
r—_—— : |
x=C and y<=C sional error condition

x"=¢ and Y=C 1

x<€¢ and Y is not a signal the error

<constant integer> condition

For other cases the result is an approximation to the actual value.

4.4.2 Bit-string Operators

The bit-string operators are:

i Symbol Operator Form
- complement prefix
I inclusive or infix
& and infix

Bit-string operators require bit-string operands; they do not force
conversion of their operands to bit-strings, however explicit conversions can
be written using builtin functions. The latter operate according to the
rules given in section 4.5. The lengths of the converted operands are
defined by the following rules:

® A character-string operand must be converted (using the BIT builtin
function) to type bit-string, normally the same 1length as the
character-string.
B An arithmetic operand must be converted (using the BIT built-in
function) to type bit-string with length as defined in section 4.7.
4.4.2.1 Bit-string Prefix-operator Results
The complement operator is the only prefix operator.
The result of the complement operator has the same bit-string attributes
as the operand. The result value 1is the complement of the value of the

converted operand (each 1 bit becomes a € bit, anc each { bit becomes a 1
Bit).

4-22

I L AN

Data References and Expressions

allowed, and that as many fraction~l digits are preserved as are allowed
by the implementation. Use of these values as operands of other

fixed-point computations can lead to states of computation that produce
the fixedoverflow condition.

Example:

ceclare (A, B) fixed (7, 0),
& fixed (7, 0);
Ao aA/B + C Siole

The precision of the guotient is (63, 56); for many values of A, E, and
C the fixedoverflow condition could occur. It does so because the
division yields a fraction; then the addition attempts to align the
radix points by scaling the value of C. As a result of the latter, the
precision of the scaled quantity exceeds the 1limit (N=63) of the
machine-system.

The DIVIDE built-in function described in section 4.7 can be used

to control the precision of the result of fixed-piont (or
floating-point) division.

Note: if the relation p+g-s = N holds, the guotient is an integer.
For example, if X and Y are integers of maximum precision (N, €), then
the cuotient of X / Y has precision (N, 9).

Implementation note: A max_precision option could be a desirable
procedure <entry option>.

Power operator (**).

If the second operand is a constant or a <decimal integer> whose value
is denoted by E, the result is fixed-point only if ((p+l)*E-1) < N;
otherwise, the first operand is converted to floating-point and the
rules for algebraic exponentiation apply.

In cases for which the result is fixed-point, the precision is
given by:

(() * E =~ 1, g*E)

The value of the result is the value of the first operand multiplied by
itself E-1 times.

In the following cases, if X is the first operand and Y is the
second operand, X ** Y is defined as follows:

4-21

-~

sy

PPN

W RTIEN ETAL

Data References and Expressions

Format:

LOG2(<expression>)

The value returned has the same date tyve as the operand. If <expression> is
an array or structure, then the logaritht of each member is returned.

4.7.3.3 SI®

The SIN built=-in function will finé the sine of a given value, which is
expressed in radians.

Format:

SIN(<expressicnd>)
The <expression> term must be either fixed-point or floating~point. The
value returned is the sine of <expression>, where <expression> is in radians.

If <expression> is an array or structure, then the sine cf each member ic
returned.

4.7.3.4 SCRT

The SQORT built-in function will find the sguare root of a given wvalue.
Format:
SORT (<expression>)

The <expression> term must be either fixed-point or floating-point, and
positive. The value returnea is the sguare root of <expression>. If
<expression> is an array or structure, then the square root of each member ic
returned. The ERRCR condition will be raisec if any member of <expression>
is negative.

4.7.3.5 TaN

The Tad built-in function will find the tangent of a given value, which
is expressed in radians.

Format:
TA!(<expression>)

The <expression> term must be either fixed-point or floating-point. The
value returnec is the tangent of <expression>, where <expression> 1is in
radians. If <expression> is an array or structure, then the tangent of each
merber is returned. The ERROK conditior will be raisea if any member of
<expression> represents a value of either 90 degrees or 27C degrees.

4-48

»

TR T

S

¥
E &

Data References and Expressions

4.7.2.19 TRUNC

The TRUNC built-in function will truncate a given value to an integer.
Format:

TRUNC (<expression)>)

The result of TRUNC is not larger than <expression> in absolute value. If
<expression> is an array or structure, then the TRUNC of each member is
returned.

The function first determines if a value if positive, negative, or egual
to 8. If the value is negative, TRUNC returns the smallest integer that is
not less than that value. If the value is positive or zero, TRUNC returns
the largest integer that does not exceed that value.

In tabular form:

magnitude of <expression> value produced
less than zero CEIL(<expression>)
zero or greater FLOOR(<expression>)

4.7.3 Mathematical Built-in Functions
4,7.3.1 COs

The CCS built-in function will find the cosine of a given value, which
is expressed in radians.

Format:

COS(<expression>)
The <expression> term must be either fixed-point or floating-point. The
value returned is the cosine of <expression>, where <expression> 1is 1in
radians. If <expression> is an array or structure, then the cosine of each
member is returned.
4.7.3.2 10G2

The LOG2 built-in function will find the binary (base 2) logarithm of a
given floating-point or fixed-point value.

4-47

ey

e
LI

A = £ B

Data References ana Exprecssions

Format:

MULTIPLY (<expression>, <expression>, <result precision)
[, <result scale>])

The first two <expression>s are multiplied together to produce a result with
precision specifiec by <result precision>, and with scale specifiec by
<result scale>. If the type of the result is floatinc-point, the
<result scale> tern. is not ailowed. If the first two <expression>s are both
arrays or structures, then the product of each member is returned. The rulec
governing conformance and promotion (4.6) apply when multiplying the two
<expression>s tocether.

4.7.2.17 PRECISION

The PRECISION built-in function will convert an arithmetic value to a
specified precision.

Format:

PRECISION(<expression>, <result precision)
[, <result scale>])

The <expression> term must be either a fixed-point or a floating-point value.
The <result precicsion> term specifies the precision and the <result scale>
terr the scale. If the tyre of the value of <expression> is floatinc point,
only the <result precision> term iz allowea. If <expression> is an array or
structure, then the PRECISION function is applied to each member.

4.7.2.18 SUCTRACT

The SUSTRACT built-in function will contrel the precision of a
subtraction operation.

Format:

SUBTFACT (<expression>, <expression>, <result precision>
i, <result scale>])

The second <expression> is subtracted from the first <expression> and the
resulting value will have precision as specified by the <result precision>
term and scale as specified by the <result scale> teri. If the resulting
value iz of type floating-point, then only the <result precision> term may be
specifiec. If <exprescion> is an array or structure, then the SUPTRACT of
each merber is returned. The rules governing conformance and promotion (4.6)
aprly when subtractinc the two <expression>s.

Data References and Expressions
returned is B'@'. If <expression> is an array, then a bit-string array (of
length one) of values is returned.

4.7.2.13 MAX

The MAX built-in function will «xtract the higher-valued expression from
a given pair expressions. If the two <expression>s are arrays, then an array
consisting of the higher value of each pair is returned.

Format:

MAY (<expression>, <expression>)

4.7.2.14 MIN

The MIN built-in function will extract the lower-valued expression from
a given pair of expressions, possibly arrays of matching extents., If the two
<expression>s are arrays, then an array consisting of the smaller value of
y each pair 1s returnea.
Format:

MIN(<expression>, <expression>)

4.7.2.15 MCD

3
: The MOD built-in function will determine the remainder resulting from
i dividing one arithmetic quantity by another.
: Forimat:
f
MOD (<expression>, <expression>)
i The value returned is zero if the second <expression> is zero. Ctherwise the
value is given algebraically by
MOD(x, y) = x =y * FLOOR(x / Y)
g If <expression> is an array or structure, then the NOC of each member is
: returned. The rules governing conformance and promotion (4.0) apply when
aividing the first <expression> by the second.
4.7.2.16 IMNULTIPLY
i The MULTIPLY built-in function controls the precision of the result of a
nultiplication operation.
;
L3 4-45

&
| %
&

s

adi

BT o T M A

—rig

B

Data References ana Expressions

Format:

MULTIPLY (<expression>, <expression>, <result precision>
[, <result scale>])

The first two <expression>s are multiplied together to produce a result with
precision specifiec by <result precision>, and with scale specifiec by
<result scale>. If the type of the result is floating-point, the
<result scale> term is not allowec. If the first two <expression>c are both
arrays or structures, then the product of each member is returned. The rulec
governing conformance and promotion (4.6) apply when multiglying the two
<expression>s together.

4.7.2.17 PRECISION

The PRECISION built-in function will convert an arithmetic value to a
specified precision.

Format:

PRECISION(<expression>, <result precision>
[, <result scale>])

The <expression> term must be either a fixed-point or a floating-point value.
The <result precicion> term specifiec the precision and the <result scale>
terr the scele. If the tyre of the value of <expression> is floatinc woint,
only the <result precision> term is allowed. If <expression> is an array or
structure, then the PRECISION function is applied to each member.

4.7.2.1¢ SUCTRACT

The SUSTRACT built-in function will control the precision of a
subtraction operation.

Format:

SUBTFACT(<expression>, <expression>, <result precision>
[, <result scale>])

The second <expression> is subtracted from the first <expression> and the
resulting value w1ll have precision as specified by the <result precision
term and scale as specified by the <result scale> term. If the resultlng
value is of type floatlno-p01nt then only the <result precision> term may be
specifiec. If <exprescion> is an array or structure, then the SUE”RAC" of
each member is returned. The rules governing conformance and promotion (4.6)
aprly when subtracting the two <expressiond>s.

4-46

-

TR

e

R L7 TN

W T

Data References and Exprescions

Format:

INDEX FIRST(<expression>)
This function will examine <expression>, a bit-string array, and return the
value of the index of the first item or element of <expression> containing

any bit with a value of one. If all items of <expression> are equal to E'C',
a value of zero will be returnea.

4.7.2.18 INDEX_FAX

The INDEX_MAX built-in function will determine the index of the largest
value in a single dimensioned array.

Format:

INDEX MAX(<expression>)
This function will examine <expression>, a one dimensioned array, and return
the value of the index of the array element member whose value is the

largest. In the event of more than one array member having the same largest
value, the smallest index value will be returned.

4.7.2.11 INDEX_MIN

The INCEX MIs built-in function will determine the index of the smallest
value in a single dimensioned array.

Format:

INCEX MIN(<expression>)
This function will examine <expression>, a one dimensioned array, and return
the value of the index of the array element member whose value 1is the
smallest. In the event of more than one array member having the same
smallest value, the smallest index value will be returned.
4.7.2.12 INTERVAL TEST

The INTERVAL TEST built-in function will perform an interval comparison
test.

Format:
INTERVAL TEST(<expression>, <lower limit>, <upper limit>)
Thic function returns a value of type bit-string (length one). If the value

of <expression> is greater than or egual to <lower limit>, ana less than cr
equal to <upper limit>, then the value returned is D'l', otherwise the value

4-44

-

- <

R S T

v

3

Data Reterences and Expressions

I1f the <result precision> term is less than the precision of the source
<expression>, the OVERFLOW condition will be raised. Otherwise the FIXED
source <expression> 1is converted to the equivalent floating-point
representation and assigned to the target. ;

If the source is CHARACTER:

The precision of the converted result will be specified by the
<result precision> term, unless omitted. If omitted, the precision of the
converted result 1is derived as follows: Let len be the declared length of
the source <expression>, then the precision of the converted result is egual
to CEIL(3.32*len).

The source <expression> must consist only of characters as specified by
the definition of a <floating-point constant». It is then converted to its
base two radix equivalent. Thus the converted result of a given character
string is simply its base two radix equivalent with precision as specified
above.

If the <result precision> term 1is specified, and it 1is less than
CEIL(3.32*1len), then the SIZE condition is raised and the converted result is
undefined. If the source <expression> consists of characters other than
allowed for a <floating-point constant>, the CONVERSION condition will be
raised. The CONVERSICN condition will also be raised if the
<result precision> term is omitted and the length of the source <expression>
is null.

4.7.2.8 FLOCR

The FLOCR built-in function will determine the largest integer that does
not exceea a given value.

Format:

FLOOR(<expression>)
The <expression> term must be of type arithmetic, and the value retuirned will
be the largest fixed-point scaled zero integer that does not exceed
<expression>. If <expression> 1is an array or structure, then the FLOOR of
each member is returned.
4.7.2.9 INDEX_FIRST

The INDEX_FIRST built-in function will determine the smallest index
position of a one bit in a bit-string array.

4-43

R

P

B L W

W I

Data References and Expressions

If the source is CHARACTER:

The precision of the converted result will be specified by the
<result precision> term, unless omitted. If omitted, the precision of the
convertea result 1is derived as follows: Let len be the declared length of
the source <expression>, then the precision of the converted result is eaual
to CEIL(3.32*1len).

The source <expression> must consist only of characters as specified by
the definition of a <decimal fixed-point constant>. It is then converted to
its base twc radix eguivalent. Thus the converted result of a given
character string is simply its base two radix eauivalent with precision as
specified above.

If the <result precision> term is specified, and it is less than
CEIL(3.32*1len), then the SIZE condition is raised and the converted result is
undefined. If the source <expression> consists of characters other than
allowed for a <decimal fixed-point constant>, the COWVERSION condition will
be raised. The QOONVERSICYN condition will also be raised if the
<result precision> term is omitted and the length of the source <expression>
is null.
4.7.2:1F 'FLOAP

The FLOAT built-in function controls the precision of the result of a
conversion to floating-point.

Format:

FLOAT (<expression> [, <result precision>])
The <expression> 1is the wvalue to be converted to floating-point. The
<result precision> term, when present, specifies the precision of the result.
If <expression> is an array or structure, then the conversion of each member
is returned.

The rules for conversion to FLOAT depend on the type of source data.
The rules follow:

If the source is BIT:

The source <expression> must first be convertea to CARDIWNAL.
I1f the source is CARDINAL:

The source <expression> must first be converted to FIXED.

1f the source is FIXED:

4-42

oy
e L "

s
pLEpeN

Data References and Expressions

<result scale> term, when present, specifies the scale of the result. If the
result is a floating point value, then only the <result precision> term may
be specified. If <expression> is an array or structure, then the division of
each member is returned. The rules governing conformance and promotion (4.6)
aprly when dividing the first <expression> by the second.

4.7.2.6 FIXED

The FIXED built-in function controls the precision of the result of a
conversion to fixed-point.

Format:
FIXED(<expression> [, <result precision> [, <result scale>]])

The <expression> 1is the value tc be converted to fixed-point. The <result
precision> term specifies the precision, and the <result scale> term the
scale of the result. If <expression> is an array or structure, then the
conversion of each member is returned.

The rules for conversion to FIXED depend on the type of the source data.
The rules follow:

If the source is BIT:
(1) The source <expression> must first be converted to CARDINAL.
If the source is CARDINAL:

The precision of the result will be specified by the <result precision>
term, unless omitted. If omitted, the precision of the converted result is
that of the source <expression>. See section 4.5.1 for further discussion.

\

If the source is FIXED:

In this case only the precision is altered. See the PRECISION built-in
function for further discussion.

If the source ‘s FLOAT:

If the optional <result scale> term is omitted, a fixed-point scaled
zero value 1is returned. If the <result precision> term is omitted, the
precision of the source <expression> will be the precision of the result. If
the <result precision> term is specified, and the value of the floating-point
<expression> cannot be contained in the range of :values allowed by the
<result precision> and <result scale> of the target, the SIZE condition is
raised. Otherwise, the source <expression> is converted to a fixed-point
value with precision and scale as specified.

Data References and Expressions

The source <expression> must consist only of blanks and/or cGecimal
digits. It 1is then converted to its base two radix equivalent. Thus the
convertec result of a given character string is simply its base two racix
eguivalent witn precision as specified above.

If the <result precision> term is specified, and it is less than
CEIL(3.32*len), then the SIZE condition is raised and the conver te¢ result is
undefined. If the source <expression> consists of characters other than
blanks and/or decimal digits, the CONVERSION condition will be raised. The
CONVERSION condition will also be raised if the <result precision> 1is
unspecified and the length of the source <expression> is null.

1f the source is FIXED:
The precision of the result will be specified by the <result precision>

term, unless omitted. 1f omitted, the precision of the converted result is
that of the source <expression>. See section 4.5.2 for further discussion.

1f the source is FLOAT:

The source <expression> must first be converted to FIXED.

4.7.2.4 CEIL

The CEIL built-in function Getermines the smallest integer that is
greater than or egual to a given fixed or floating point expression.

Format:
CEIL(<expression>)

The value returned by CEIL will be the smallest fixed-point scaled zero
integer number that is greater than or equal to the fixed or floating point
value represented by (expression>. If <expression> is an array or structure,
then the CEIL of each member is returned.

4.7.2.5 DIVIDE

The DIVIDE built-in function controle the precision of the result of &
divide operation.

Format:

K DIVIDE(<expression>, <expression>, <{result precision>
¢ [, <result scale>])

The first <expression> is the dividend and the second <exprescion> i<
divisor. Both must be ‘arithmetic and of the same type.
<result precision> term specifies the precision of the result, whil

W TN e i e

4-47

R

R

e

W TIUN RTRLTRY

@ Ty

r

Input/Output

8. INPUT/OUTPUT

8.1 Introduction

This language includes input and output statements which enable data to
be transmitted between internal storage and peripherals. A collection of data
external to a program is called a dataset. Transmission of data from a
dataset to internal storage is called input, and transmission of data from
internal storage to a dataset is called output.

Input and output statements, from a language viewpoint, are associated
with the logical organization of a dataset and not with its
physical(environment) characteristics. The Input/Output statements can be

defined without specific knowledge of the physical characteristics of the
peripheral devices that will be utilized.

To permit a source program to consider the logical aspects of data
rather than the physical characteristics in a dataset, the language will
provide a symbolic representation of a dataset called a file. A file can be
associated with different datasets during the execution of a program.

In this language record-oriented input/output will be supported. In
record-oriented transmission, the data is considered to be a collection of

discrete records. No data conversion takes place during the record
transmission.

The advantages of record-oriented transmission are:

1) more efficient execution since no conversions are
performed

2) less space is required on external storage devices

3) any format is acceptable

4) programmer has more control and awareness of the
structure of the data.

This chapter will cover the

syntax and semantics of record-oriented
Input/Qutput.

8.2 Datasets

8-1

Assignment and Allocation

Examples:

Allocate an array dynamically using the current value of x

for the
extent of its dimensions.

declare A (X, X) bit(32) controlled ;
X = 16;
allocate A ;

bl

7.3 FREE Statement
Syntax:

<free statement> ::= FREE <reference>

[, <reference>] ... ;

The FREE statement releases storage from association with a variable

having the CONTROLLED atribute. When the storage is freed, it can be wused
for other variables.

The '"reference" must be an unsubscripted level-one variable. If it has

no storage allocated to it when the FREE statement is executed, no attempt is
made to free it,

| Examples:

Allocate an array B with two different extents at different

paints
during execution of the program.

} declare R(X, X) fixed(3l, 0) controlled;

X = 8;
allocate B;

free B;
X =16;
i allocate B;

.
.

free B;

.

The combined use of the ALLOCATE and FREE statements can facilitate more
efficient use of storage in certain situations. If many small allocations
are needed, prudent usage of ALLOCATE and FREE can minimize fragmentation.

For example, the size of such variables in one program could all be multiples
of each other or all multiples of powers of two.

7-5

C o E T W AT TR

Assignment and Allocation

Whenever the <target> reference is an array, and the source <expression>
value is a scalar, the scalar value 1is replicated and stored into all
specified elements of the <target> reference array.

7.1.4 Structure Assignment

Structure assignment applies when a <target> reference is a <structure>.
1f the source <expression> value is a scalar, it is assigned to each member
of the <target> structure according to the rules of scalar assignment,

If the source <expression> wvalue 1is a <structure>, the source
<expression> and <target> reference must have conforming structure for
corresponding containing levels. The number and structure of containing
members must match on each level., Structure members from the <expression>
are promoted to an aggregate value that conforms with the corresponding level
of the <target> reference and are converted, where allowed, to the <target>
member data type. The possibly promoted and converted value is assigned to
the <target> member. The promotions and conversions do not effect the wvalue
of the source <expression>,

As 1is the casec for array assignment, the order of assignment of
individual data items in structure assignment is not specified and any
assignment which depends on the order is in error.

7.2 ALLOCATE Statement
Syntax:

<allocate statement> ::= ALLOCATE <allocate list> ;
<allocate list> ::= <allocate reference>

[, <allocate reference>] ...
<allocate reference> ::= <identifier>

The ALLOCATE statement allows control of association of a dynamic
variable (one having the attribute CONTROLLED) with storage. The execution
of the statement causes storage to be allocated for a specified variable or
list of variables,

The amount of storage to be allocated, called the "extent" of the
variable, 1is supplied in the declaration of the variahle and can be
non-constant in value. If insufficient storage exists within 'systen
storage', the STORAGE condition occurs(see section 9).

The variables allocated remain so when control leaves the block in which
the allocation was performed. The variables arc dis-associated from storage
by the FRFE statement.

Assignment and Allocation

(i+j-1)-th character or bit. All other characters or bits of the string are
unmodified.

7.1.2 Array Assignment

If the <target> is an array reference, array assignment is performed to
each of the elements of the reference. Various cases apply according to the
aggregate type of the source <expression>, If the <expression> is a scalar,
then a replication is performed as described in the next section,

1f the source <expression> is an array the value of the <expression> and
the <target> reference must have the same number of dimensions. The
assignment is performed by doing scalar assignments on an element-by-element
basis in each dimension using identical subscript values for the source and
target.

The order in which the assignment to individual elements is done 1is
deliberately left unspecified. Any assignment in which the order of
assignment to array elements is significant is incorrect and the program 1is
in error.

For each dimension the rule of "the lesser of the two corresponding
extents" applies (see also section 4.6 on "Conformance') when assigning the
array element values to the corresponding items of the <target> reference.
The rule is defined as two cases which apply to each dimension of the arrays
below.

Case 1: The given dimension of the <target> has a smaller number
of elements than the corresponding dimension of the source
<expression> array.

Result: The assignment of elements is complete when the extent
of the <target> reference 1s reached. Also alignment of array
elements occurs before the assignments are made. Unused elements
in the source array <expression> do not participate in the
assignment operation.

Case 2: The given dimension of the <target> has a larger number
of elements than the corresponding dimension of the source array
<expression>,

Result: The assignment of elements is complete when the extent
of the source array <expression> is reached. Unused elements in
the <target> array do not participate in the assignment operation,

7.1.3 Scalar Broadcast Assignment

7-3

WAL R

1
.

Assignment and Allocation

7.1.1.2 String Assignment
1f the <target> is of type string, string assignment is performed.

If the source <expression> is a <reference> to a scalar character-string
or bit-string wvariable, the generation of storage identified by that
<reference> cannot overlap the generation identified by the <target>
reference, unless the <target> and the source <reference> identify exactly
the same generation of storage.

For a <target> with the <varying> attribute the length of the source
<expression> string must not exceed the declared maximum length for the
<target>, I1f it does, the STRINGSIZE condition is signalled (see section 9
for conditions) and the assignment does not occur, If the length is not
greater than the declared <target> maximum length, the source <expression>
string value is assigned to the <target> reference. The 1length of the
<expression> becomes the new length of the <target> string value.

For a <target> without the <varying> attribute, if the source
<expression> string value is longer than the dectared length of the <target>
reference then it is truncated on the right to the length of the <target>
string. If the <expression> is shorter it is padded on the right with ASCII
blanks to the length of the <target> string.

7.1.1.3 Arithmetic Assignment

The source <expression> is assigned to the <target> according to the
precision rules for infix operations as defined in section 4.4.

7.1.1.4 Substr Pscudo Variable

If the <target> is the <substr pseudo>, the values of the <expression>s
must be either fixed-point integers or of type <cardinal>. Let i be the
value of the first <expression> and j be the value of the second
<expression>. If the string variable identified by the <reference> is
declared with the <varying> attribute, let n be the current 1length of the
string variable value; otherwise, let n be the evaluated string length
associated with the variable’s generation of storage.

If the second <expression> 1is onitted, let j be n-i+l, 1f
(0 <= i=] <= j+i-] <= n) 1is not satisfied, the STRINGRANGE condition occurs.
If detection of the condition is disabled, the program is in error and the
results of continued execution are undefined.

I1f the 1inequality 1s satisfied, the value is assigned to the string
variable beginning with the i-th character or bit and continuing through the

1-2

O

preS e

T TRRGETR T

~

APPENDIX

ABS

Activated
Activation record
ADD

Aggregate promotion
Aggregate value
ALIGNED

ALLOCATE
ALLOCATION
Applicable
Argument

Array

Array of structures
AUTOMATIC

Basic expression
BIT

Bit-string

Block activation
Block structure
BOOL

Builtin attribute
Built=-in function
BY

By-reference
By-value

BYTE

CALL

CARDINAL attribute
CASE

Category name

CELL

CHARACTER
Character-string
CLOSE

COLLATE

Condition

Conditional Statement

Conformance
Connected Array
Consecutive
Constant

CONSTANT attribute
Contained

CONTROLLED
CONVERSION
Conversion, implicit
Conversion functions
COoprPY

L o -

. . .

w N

* °» o 8 o o o o « o o o
AW WD NDD BN
e ® o o @& o+ e o o ° o e e o

WWWwea o

>
.
w U ww

. L]
ANNAOAEENNHHNASENO

HOOHFHSNBNHFEFEAWBR NS NWOO NN

W &
. L] .
L]
LD UHFONYHFNDWOLBHELODUUIOASE R WULIWL

[
.
w
.
[\]
Ww- oW

o w

o o
HALOFOANOWNDLAELENANOLUHHWNONDODOO O
* » % & e ® o e ° o o o o o

o
.
~
.

Terms

P

W T AL

»
?
*

T

Complete Syntax

<file option> ::= FILE(<reference>)

<into option> ::= INTO(<reference>)

<from option> ::= FROM(<reference>)
<ignore option> ::= IGNORE(<expression>)
<key option> ::= KEY(<expression))
<keyfrom option> ::= KEYFROM(<expression>)

SCCTION 9 SYNTAX

Section 9.1

<condition name> ::= CONVERSION

| ENDFILE (<reference>)

| ERROR | FINISH

| FIXEDOVERFLOW.

| KEY (<reference>)

| OVERFLOW
| RECORC (<reference>)
| SIZE | STORAGE | STRINGRANGE
| STRINGSIZE | SUBSCRIPTRANGE
| TRANSMIT (<reference))
| UNDEFINEDFILE (<reference>)
| UNDERFLOwW | ZERODIVIDE

Section 9.2

<on statement> ::= ON <condition name> <on-unit>
<on-unit> ::= <statement list> ENDOM;
| [SYSTEM] ;

<revert statement> ::= REVERT <condition name>
[,<condition name>]... ;

<signal statement> ::= SIGNAL <condition name>;

A-12

APPENDIX

L e

P T R T T TTEe T e e s ER s

Complete Syntax

SECTION 8 SYNTAX

Section 8.3
<file attribute> ::= FILE
<record attribute> ::= RECORD

<input attribute> ::= INPUT
<output attribute> ::= OUTPUT

<update attribute> ::= UPDATE
<{sequential attribute> ::= SEQUENTIAL
<direct attribute> ::= DIRECT

<keyed attribute> ::= KEYED

<environment> ::= ENVIRONMENT(<option list>)

<open statement> ::= OPEN <single open>
[, <single open>) ;

<single open> ::= <file option>
{ [RECORD]
& [<title option>]
® { INPUT | OUTPUT | UPDATE }
® { SEQUENTIAL | DIRECT [KEYED] }
8 [<environment>] }

<title option> ::= TITLE(<expression>)

<close statement> ::= CLOSE <single close>
[, <single close>] ;
<single close> ::= <file option>
<environment>

Section 8.4

<read statement> ::= READ <file option>
{ <into option> | <ignore option> }
[<key option>] ;

<write statement> ::= WRITE <file option> <from option>
[<keyfrom option>] ;

<rewrite statement> ::= REWRITE <file option> <from option>
[<key option>] ;

<delete statement> ::= DELETE <file option>
[<key option>] ;

A-11

APPENDIX

-

—

TN RN T

-

L

Complete Syntax

<logical if> ::= IF (<expression>)

Section €.5

<call statement> ::= CALL <entry reference>
[<argument list>) ;

<return statement> ::= RETURN [(<function value> Yl s
<function value> ::= <expression>

Section 6.6

<goto statement> ::= GO TO <identifier>
| GOTO <identifier>

~e we

Section 6.7

<exit statement> ::= EXIT [<identifier>] ;

SECTION 7 SYNTAX
Section 7.1

<assignment statement> ::= <target> = <expression> ;
<target> ::= <reference> | <pseudo-variable>
<pseudo-variable> ::= <substr pseudo>
<substr pseudo> ::= substr (<reference>

» <expression> [, <expression>])

Section 7.2

<allocate statement> ::= ALLOCATE <allocate list> :
<allocate list> ::= <allocate reference>

[, <allocate reference>] ...
<allocate reference> ::= <identifier>

Section 7.3

<free statemerit> ::= FREE <reference>
[, <reference>] ...

.
’

A-10
APPENDIX
e — . AR AU TR (LTI, S0 70 RS s o o

TG N e RSN s sy

Camplete Syntax

SECTION 6 SYNTAX
Section 6.1

<iterative loop> ::= DO <step definit.ion> <group body>
ENDDO [<ide. “ifier>] ;

<step definition> ::= <index> = <expression>

<iteration control> ;

<index> ::= <identifier>

<iteration control> ::= TO <limit> [BY <increment>]

<limit> ::= <expression>

<increment> ::= <expression>

<group body> ::= <basic statement>...

Section 6.2

' <repetitive loop> ::= <do while> <group body>
ENDDO [<identifier>) ;
<do while> ::= DO WHILE (<expression>) ;
<group body> ::= { [<label prefix>]
<basic statement> }...

Section 6.3
L
J <case group> ::= <case heading> <case body> <endcase>
i <case heading> ::= DO CASE <expression> ;
<case body> ::= <case section>... [<else case>]
: <case section> ::= <case prefix>... <basic statement>...
i <case prefix> ::= CASE (<cvi expression>
{ : <cvi expression>]) :
<else case> ::= ELSECASE <basic statement>...
| <endcase> ::= ENDCASE [<identifier>] ;
Section 6.4
<conditional statement> ::= <if statement>
< | <ifarray statement>
! | <logical if statement>
<if statement> ::= <if clause> <if body> <endif>
Kifarray statement> ::= <ifarray clause>
<if body> <endif>
<if clause> ::= IF <expression>
: <ifarray clause> ::= IFARRAY <expression>
i <if body> ::= <true part> [<else part>]
<true part> ::= THEN <basic statement>...
i, <else part> ::= ELSE <basic statement>...
§ <endif> ::= ENDIF [<identifier>] ;
P <logical if statement> ::= <logical if>
| <single statement>

e 3

¥

A-9

Camplete Syntax

<procedure body> ::= <procedure component>
[<routine statement>
<procedure component>]...

<procedure component> ::= <statement> ...

<endproc statenment> :

= ENDPROC <closure identifier> ;
<closure identifier> ::

::= <identifier>

<procedure statement> ::= <label prefix> PROCEDURE
[([<parameter list>])]
[<procedure option>]... ;

<procedure option> ::= <entry option> | RECURSIVE

<entry option> ::= <reducible option>
| <returns attribute>

<parameter list> ::= <identifier>
[» <identifier>] ...

<reducible option> ::= <irreducible attribute>
| <reducible attribute>

<irreducible attribute> ::= IRREDUCIBLE

<reducible attribute> ::= REDUCIBLE

<returns attribute> ::= RETURNS
(<returns Gescriptor>)
<returns descriptor> ::= <descriptor>
[, <descriptor>)...
<descriptor> ::= <level> [<attribute set>]
| [<level>] <attribute set>

<routine statement> ::= <label prefix> ROUTT!E
[(| <parameter list>])]
[<entry option>] ;

<entry> ::= ENTRY [(
| <parameter Gescriptor list>])]
[<entry option>]

<parameter descriptor list> ::= <parameter descriptor>
[, <parameter descriptor>]...

<parameter descriptor> ::= <descriptor>

P —— p—

Complete Syntax |
Section 4.3

<expression> ::= <expression one>
| <expression> | <expression oned>

<expression one> ::= <expression two> i
| <expression one> & <expression two>

s
<expression two> ::= <expression three>
| <expression three> <relational> <expression three>
<relational> ::==| "= | < | "< | <= | 217> | >=

:) i
<expression three> ::= <expression four> |
| <expression three> || <expression four> 3

<expression four> ::= <expression five>
| <expression four> { + | - } <expression five>

<expression five> ::=

<expression six>
| <expression five> { * | / } <expression six>

<expression six> ::= <basic expression>
| <simple expression>

| <parenthesized expression> | <expression seven>

<expression seven> ::= { <basic expression>
{ | <parenthesized expression> }
- ** <expression six>
: <simple expression> ::= {+ | = | =} <expression six>
t

<parenthesized expression> ::= { <expression>)

<basic expression> ::= <reference>
! | <literal constant> | <i-sub>

<cvi expression> ::= <expression>

SECTION 5 SYNTAX

Section 5.3

<procedure> ::= <procedure statement)>

<procedure body> <endproc statement>

=¥

A-7
APPENDIX

W I TACLTR T

&
T
-

e

o

%
L ¢

APPENDIX

/* Store total number of
processed line */

vector_nunmbe
ENDDO

ENDPROC follow lines ;

points in current

r_points[index) = number_nf_points

’

Sanple Program Report

——

p

W I TR

?
e
F &

DO dir = prev_direction TO
prev_direction + number_of_directions
cur_dir = MOD(dir-1,8)

Sanple Program Report

/% Check direction cur_dir for a one bit */

DO CASE cur_dir ;

CASE(0): IF(data[i,j+1]) .
found_succeeding_point = B“1° ;
CASE(1): IF(data[i+]1,j+1])
found_succeeding_point = B°1° ;
CASE(2): IF(data[i+],j])
found_succeeding_point = B°1°
CASE(3): IF(data[i+l,j-1])
found_succeeding_point = R°1° ;
CASE(4): IF(data(i,j-1])
found_succeeding_point = B“1" ;
CASL(5): IF(datafi-1,j-11)
found_succeeding_point = B’1’ ;
CASL(6): IF(data(i-1,j])
found_succeeding_point = B°1°
CASE(7): IF(data[i-1,j+1])

we

found_succeeding_point = B’1°
ENDCASL 3
IF(found_succeeding point) EXIT;
ENDDO :

IF found_succeeding_point THEN

/* Enter direction of discovered point */

vector_list[index,number_of_points] = cur_dir

number_of_points = number_of points + 1 3

/* Start search for next point based on
direction of current point */

prev_direction = next_direction[cur_dir+1)

.
’

/* Number of possible directions to try is based

on direction of currerc point */

number_of_directions = table_of_tries[cur_dir+l]

ENDIF
ENDDO

C-5
APPENDIX

E 5

it

.
LS

ATV TR

-

T

/* Clear boarder around data area */
data[l,*] = 0;
data[l94,%) = 0;
data(*,1]) = 0;
data[*,194) = 0;
/* Examine bit vector start.tag for ones, continue
to loop until all start points have been processcd
*/
DO WHILE(SOME(start.tag))
/* Get index of first element sct to one */
index = INDEX FIRST(start.tag) ;
/% Eliminate from further processing */

start [index).tag = B0 ;

/* Start looking in direction 1 and do up to
7 additional directions as necessary */

prev_direction = |

/* Try next 7 possible directions if {1 fails */
nunber_of_directions = 7

/* Obtain coordinates of start point */

i = start{index].x
j = start[index].y

/* Start with state of '"next point in the line
has been found" */

found_succeeding_point = B°1°

number_of_points = |

DO WHILE(found_succeeding_point) ;
/* Assume end point already found */

found_succeeding_point = B0’ ;
line_follow:

APPENDIX

Sarmple Program Report

Sanple Program Report

of one means another point was found, a value of zero means the end of a line
has been detected.

NUMBER_OF_POINTS is a wvariable containing the number of points (or
vectors) discovered in a line.

DIR 1is a do-loop index and represcnts the range of directions to be
tried,

b CUR_DIR 1is the direction currently being tried and is a value between 0
r and 7, reference Figure 1.

VECTOR_LIST is a two dimensional array containing the results of the
line following procedure. It has a capacity for 32 individual lines, each
containing up to 256 vector values (up to 256 points).

VECTOR_NUMBER POINTS is an array containing the number of points for
each of the 32 possible lines contained in VECTOR_LIST.

2.2 LINE FOLLOWING PROCEDURE

follow_lines: PROCEDURE;
DECLARE data(194,194) BIT(1) MEMORY(mda),
prev_direction CARDINAL(4),
number_of directions CARDINAL(4);

DECLARE index CARDINAL(S),
1 start(32) MEMORY(mda).,

2 tag BEYCY),
2% CARDINAL(L6),
2y CARDINAL(16);

DECLARE fnund_succeeding_pnint BIT(1),
number_of points CARDINAL(16),
(dir,cur dir) CARDINAL(4),

% (i,§,index) CARDINAL(8),
2 vector_list(32,256) CARDINAL(4),
i table_of tries(8) CARDINAL(4) CONSTANT

ENTTRAL (3554345553455 349)s
next_direction(8) CARDINAL(4) CONSTANT

INTETALCT 751y 143,35555),
vector_number_points(32) CARDINAL(16);

c-3

APPENDIX

I AL

%

¢ 4

it

W T AR T

e

Sanple Program Report

parallel) such functions as line thinning (reducinp a line to a single cell
in width), clutter elimination, and tagging all lines in the array by storing
their starting coordinates 1in a table. A starting coordinate may be a
boundary point or an interior point., Beginning with a starting point, the

procedure follows the points along a line segnment vectorizing it as it
procecds.

2.1 Definition of Variable Names

DATA is a two dimensional array of single bit items and contains the
lines to be vectorized. It is oversized by one cell on each border so that
all starting points will be "interior points". In this way no check need be
made when following a line to insure the dimensions of DATA are not exceeded.

START.TAC 1is an array of single bit itens containing a one bit value in

cach index position of a starting coordinate, i.e., values in the arrays
START.X and START.Y are selected.

START.X 1is an array of x coordinate starting point values of the
various lines contained in the DATA array.

START.Y is an array of 1y coordinate starting point valucs of the
various lines contained in the DATA array.

PREV_DIRECTICON is a variable containing the direction of the previous

successful search along the 1line. In Figure 1 the column of values under
“LATEST POIRT" correspond with PREV_DIRLCTION values.

NEXT_DIRECTIUN is an array of values containing the first direction of
search for the point along the line, and is a function of PREV_DIRECTION. In

Figure | the column of values under "FIRST DIRECTION FOR NEXT CHECKED POINT"
correspond with NEXT DIRECTION values.

TABLE_OF_TRILS 1is an array containing the maximum number of possible
directions in which the succeeding point along a line may be found. 1In

Figure 1 the colunmn of values under "# DIRECTIONS TO CHECK" correspond with
TABLE_OF_TRIES values.

FOUND_SUCCEEDINC_POINT is a single bit tag indicating whether the line

following procedure was successful at detecting a succeeding point. A wvalue

C-2
APPENDIX

e

o & T YO

L e

B T

-
¥

Sample Program Report

1. INTRODUCTION

Two applications were selected to 1illustrate the facilities of the
STAPAN high order language defined in the specification document.

The applications chosen demonstrate the language facilities in general,
and the special features of the language that make use of the STARAN’s unique
architecture, .

The first sample program, line following, shows the advantage of STARAN
in an application that requires logic and bit manipulations on single bit
items. The language, unlike FORTRAN, provides the required facilities to
operate on bit vectors. This application is not practical on a sequential
machine programmed in FORTRAN.

The second sample program, image magnification, demonstrates the
advantage of STARAN in performing parallel arithmetic operations. The
language provides parallel vector operations on variable precision numbers.
These facilities are not available or practical in a high level language on a
sequential machine. The cubic convolution routine which is a part of this
program illustrates three methods of programming to show various levels of
control provided in the language.

In both sample programs, a comparison was made to a version written in
APPLE, the STARAN assembly language. The ratio of high 1level language
instructions (statements) to APPLE instructions was approximately 1 to 5.

Since both applications have unique requirements that are not easily
expressed in existing high level languages, a meaningful comparison to one of
these languages cannot be made.

2., LINE FOLLOWING

One of the reasons for choosing this algorithm as a candidate for coding
is the nature of the process performed. The data being processed is
essentially binary ones and zeroes representing the raster scanned data of a
map. It is observed that the degree of effort and clarity of representation
of this algorithm as written in high level language are good tests for the
programming language.

The line following procedure vectorizes all 1lines in an array and
outputs the data to various tables. A previous routine has performed (in

c-1
APPENDIX

Sanple Program Report

I5[617]1 EIGHT FIRST
14]1X]0] DIRECTIONAL DIRECTION
1312]1] VALUES FOR NEXT #
LATEST CHECKED DIRECTIONS
POINT POINT TO CHECK
T
[ON|*| 0 7 3
I ol
]
‘ 0] [*|
‘ | _INI*| 1 7 5
: | %[%]*|
'
|_lo] |
i |_IN] | 2 1 3
| *[*]*|
Ix] o]
‘ [*IN] | 3 1 5
3 BRI
\ T
i |*|IN]O| 4 3 3
! 12 l
: IN[EIx]
t (x5 | 5 3 5
ol
| | %% *| .5
18] | 6 5 3
i ol |
| %] *|*|
5 | _IN|*| 7 5 5
: (ol [*I
:
? Figure 1. Vector Increment Search Criteria
i N = new point, O = old point
§ * = cells to check
4
%
| &
{g
! c-7
* APPENDIX
»

e

.;é
g,
L
£

Sample Program Report

3. IDIMAGE MACKIFICATION USING CUBIC CONVOLUTION

This program reads pixel data from magnetic tape and writes the
magnificed pixel data on magnetic tape. The program uses the cubic
convolution method for interpolating intermediate pixel values.

The program assumes a four to one

magnification mainly for ease of
reading and

understanding. It should be noted that the magnification factor
and other associated constants in the program c¢ould easily be defined as
variables. The magnification is performed in one direction only.

The program consists of a main progran which performs magnetic tape 1/0,
and two subroutines: DATAMAP and CUBIC.

DATAMAP arranges pixel data in the DA memory to permit the parallel
computations required in the CUBIC subroutine.

CUBIC performs the cubic convolution algorithm, and recturns the
magnified pixel values. The CUBIC subroutine is written using three different

programming approaches to illustrate the programmer’s flexibility in
controlling the problen solution,

3.] Definition of Variable Names

FILE_P is the nmagnetic tape input file; it contains the pixel data.
record lengths are 512

data.

The
bytes which represent one scan line of 8-bit pixel

FILE !! is the output magnetic tape file; record lengths are 512 bytes

representing one-fourth of a scan line of magnified pixel data. Four output
records are gencrated for each input record.

N_PIXELS is the number of pixels in a scan line. It is set to 512 in
this cxanmple.

PIX is a vector of 8-bit cardinal values. It contains the input pixcl
values for a scan line,

APPERDIX

RPN
T L YO N

-

Sample Program Report

XU is a 4 element vector of 4-bit fractions., It represents the position
of the interpolated (magnified® pixel values relative to the n-th input pixcl
value.

U is a vector of 4-bit fractions. It is the XU vector above replicated
N_PIXELS/4 times(128).

PIXNO 1is a vector of 8-bit cardinal values N_pixels(512) in length. It
contains the 128 pixel values from PIX; each pixel value 1is replicated 4
times to generate a vector of length 512,

PIXN contains the same values as PIXN(Q shifted up four element positions
with an additional pixel value appended to the end. This additional pixel
value is also replicated 4 times.

PIXN]l is defined the same as PIXN shifted up 4 elements.

PIXN2 is defined the same as PIXNl shifted up 4 elements.

**%kx*NOTE: An !MDA memory map is provided in the DATAMAP
description which follows#*xx*x

READING is a single bit which is wused as a flag to indicate an
end-of-file condition on the input tape.

SECNO is the number of the segment of the input vector(PIX) which is
currently being processed. SEGNO = 1 for pixel values 1 through 128; 2 for
pixel wvalues 129 through 2563 3 for pixel values 257 through 384; 4 for
pixel values 385 through 512.

BO through B8 are intermediate values in methods 2 and 3 of the CUBIC
procedure., They permit variable precision of intermediate computations and
control the order of these computations.

APPENDIX

B ae TR ik

AT TR e

-

LA

»
L
s

L=

Y i s o

Sample Program Report

3.2 Main Progran

/%
MAIN_PROC functions:

1- Reads magnetic tape records representing
a horizontal scan line of image data.

Each record contains 512 (8-bit) pixel
values.,

2- Calls DATAMAP to arrange data in the MDA
menory for parallel execution,

3- Calls CUBIC to perform the magnification
function (CUBIC returns a vector of 512 8-bit
pixel values)

4= Writes the magnified imape to a magnetic
tape(512 pixels per record)., */

magnify4: PROCEDURE;
/*DEFINE INPUT AND OUTPUT FILE*/

DCECLARE file_p FILE SEQUENTIAL INPUT RECORD,
file m FILE SEQUENTIAL OUTPUT RECORD;
DI'CLARE reading BIT(1),
n_pixels CARDINAL(16) CONSTANT INITIAL(512),
scegno CARDINAL (4);

/*DEFINE PIXEL VECTORS*/

DECLARE (pixn0O, pixn, pixnl, pixn2)(n_pixels)
CARDINAL(8) ME1ORY(mda) , /* positive values 0 to 255 */
u(n_pixels) FIXED(4,4) MEMORY(mda),
xu(4) FIXED(4,4),
pix(n_pixels) CARDINAL(R);

/* Set increment values for &4 to | magnification ratio.*/

xu(l) = ,00;
xXu(2)y = ,25;
xu(3) = .5C;
xu(4) = ,75;
reading = b“1°%;

C-10
APPENDIX

21 e A S I T o

/*OPEN MAGNETIC TAPE FILES*/

Sanple Program Report

OPLN FILE(file p) ENVIROMMENT(CONSECUTIVE,RECSIZE(n_pixels)),
(file_m) ENVIRONMENT(CONSECUTIVE,RECSIZE(n_pixels));

/* Read n_pixels pixel values into PIX %/

READ FILE(file_p) INTO (pix);

ON ENDFILE (file p) reading = b“0";
ENDON)

DO WHILE (reading);

/* Initialize counter to process n_pixels/4 of
the input data. */

segno = 1;

/* Process n_pixels/4 generating n_pixels of
magnified pixel values. g
Generate 4 output records for each input record.

DO WHILE (segna < 5);
CALL datamap (xu, segno);
CALL cubic ;
WRITE FILE (file_m) FROM (mpixn);
segno = segno +1;
ENDDO;
READ FILE (file p) INTO (pix);
ENDDO
CLOSE FILE (file_p), FILE (file_m);
END magnifyé;

3.3 Data Mapping Routine

/%
DATANMAP functions:

I~ Replicates pixel values four times each into

vector PIXNO (512 values--128 pixels input
times 4 replications)

2= Copy PIXNO to PIXN shifting vector PIXNO up

by four elements (i.e. PIXN(1l) = PIXNO(5),
PIXN(2) = PIXNO(6), etc)

3~ Copy PIXN to PIXN] shifting vector PIXN up

by four elements (i.e. PIXNI(l) = PIXN(S),
PIXN1(2) = PIXN(6), etc)

c-11

APPENDIX

x/

T AT s icuoy

-

Sample Program Report

4= Copy PIXN] to PIXN2 shifting PIXNI up
by four elements (i.e. PIXN2(1l) = PIXN1(5),
PIXN2(2) = PIXN1(6),etc)

5~ Replicate interpolation increment values
through a vector of length 512 (i.e.U(1)
= XU(1l), U(2) = XU(2), U(3) = XU(3),
U(4) = XU(4), U(5) = XU(l), u(6) = XU(2),
.o U(S511) = XU(3), U(512) = XU(4))

MDA Data Map

MDA PIXNO PIXN PIXN] PIXN2 U INTERMEDIATE MPIXN
VORD VALUES

0 p(n-1) p(n) p(n+l) p(n+2) xul _ _ n(l)

1 p(n-1) p(n) p(n+l) p(n+2) xu2 _ _ m(2)

2 p(n-1) p(n) p(n+l) p(n+2) xu3 _ _ m(3)

3 p(n-1) p(n) p(n+l) p(n+2) xué _ m(4)

4 p(n) p(n+l) p(n+2) p(n+3) xul m(5)

5 p(n) p(n+l) p(n+2) p(n+3) xu2 _ _ m(6)

6 p(n) p(n+l) p(n+2) p(n+3) xu3 e o n(7)

7 p(n) p(n+l) p(n+2) p(n+3) xus _ n(d)

8 p(ntl) p(n+2) p(n+3) p(n+s) xul m(9)

9 p(n+l) p(n+2) p(n+3) p(n+4) xu2 o m(10)
10 p(n+l) p(n+2) p(n+3) p(n+4) xu3l L) w1 1)
11 p(n+l) p(n+2) p(n+3) p(n+4) xué& mEl2)

508 p(128) p(129) p(130) p(131) xul _ _ _ m(509)
509 p(128) p(129) p(130) p(131) xu2 _ _ _ n(510)
510 p(128) p(129) p(130) p(131) xu3 _ _ _ m(511)
511 p(128) p(129) p(130) p(131) xué n(512)

%/

datamap: PROCEDURE(xu, segno);

/* Replicate n_pixels/4 pixel values four times each

to generate the vector pixnQ.

Also replicate the

incrementation values through n_pixels element vector.

5

DCCLARE (i, segno) CARDINAL(16);

DECLAPE last_4 RANGE(n_pixels-3 :

i=0;

DO WHILE (i <= n_pixels);

APPENDIX

n_pixels);

C-12

|
4

‘
&

/*

®/

Sample Program Report

uli+l) = xu[MOD(1,4)+1];
pixn0[i+l) = pix[(FLOOR(i/4) +1)*segno];
i =1+ 13

ENDDO ;

Generate vectors pixn, pixnl, pixn2, moving each up four
elements and append next pixel value on the end
replicated four times.

pixn(*] = pixnQ[5:DIM(pixn0)];
pixn[last_4] = pix[FLOOR(i/4)*segno+l];

pixnl(*] = pixn(5:DIM(pixn)];
pixnl(last_4) = PIX[FLOOR(i/&)*scgno+2];

pixn2[*]) = pixnl[5:DI'M(pixnl)];
pixn2[last_4) = PIX[FLOOP(i/4)%*segno+3];
RETURN ;

ENDPROC datamap;

3.4 Cubic Routines

/%
CUBIC functions:
1~ Uses vector values produced in DATALAP.
(PIXNO, PIXN, PIXN1, PIXN2, U)
2~ Performs cubic algorithm to generate
intermediate pixel values for the magnified
image (Three programming methods are illustrated.)
3~ Returns final magnified pixel vector (512 pixels)
to MAINPROGC for output.(MPIXN)
Formula for cubic convolution:

n(n) = (((p(n)=p(n=1)+p(n+2)-p(n+1)) *(u(n)-1)
-p(n)+p(n=1)) *u(n) +p(n+l)-p(n-1)) *u(n)
+p(n)

In program:
MPIXYN = m(n)
PIXNO = p(n-1)
PIXN = p(n)

PIXNI = p(n+l)

Cc~13
APPENDIX

Sanmple Program Report

PIXN2 = p(n+2)
U = u(n)
where n ranpes from 1 to 512

*f

3.4.1 Cubic Method Number 1
/*METHOD 1%/

/* Compiler controls intermediate storage and order of
computation(where not restricted by parentheses).
Accuracy of intermediate values is language
defined and controlled by the compiler.

L

cubic: PROCEDUREL;
mpixn=(((pixn2 -~ pixnl + pixn - pixn0)*(u - 1) - pixn
+ pixn0)*u + pixnl = pixnQ)*u + pixn;
RETURN;
ENDPROC cubic;

3.4.2 Cubic ilethod Number 2

/*METHOD 2%/
/* Program controls intermediate storage and order of computation */

cubic: PROCEDURE;

DECLARE (b0, bl, b6)(n_pixels) FIXEN(8) MEMORY(mda),
b2(n_pixels) FIXED(9) MEMORY(mda),
(b3, b4)(n_pixels) FIXED(14, 4) MEIORY(mda),
(b5, b8) (n_pixels) FIXED(19, 8) MIMORY(mda),
b7(n_pixels) FIXED(13, 4) MEMORY(mda);

b5 + bb;
b7 * u;

b0 = pixn2 - pixnl;

bl = pixn - pixn(;

b2 = b0 + bl;

b3 = b2 *(u - 1);

b4 = b3 - bl;

b5 = b4 * u;

b6 = pixnl = pixnQ;
=

C-14

APPENDIX

i

Sanple Program Report

mpixn = b8 + pixn;
RETURN;
ENDPROC cubic;

3.4.3 Cubic Method Number 3
/*1ETHOD 3%/

/* Program controls intermediate storage, order of
computation and mda memory allocation.
The effect of this is very similar to method 1
as done by the compiler. */

cubic: PROCEDURE;
DECLARE (b0, bl, b6) (n_pixels) FIXED(8) CONTROLLED MEMORY(mda),
b2(n_pixels) FIXED(9) CONTROLLED MEMORY(mda),
(b3, b4)(n_pixels) FIXED(14, &) CONTROLLED MENOPRY(mda),
(b5, b”)(n_pixols) FIXED(19, 8) CONTROLLED MEMORY(mda),
b7(n_pixels) FIXED(13, 4) CONTROLLED MEMORY (mda);
ALLOCATE b0
b0 = pixn2 - pixnl;
ALLOCATE bl, b2;
bl = pixn - pixn0;
b2 = b + bl;
FREE b0
ALLOCATFE b3;
b3 = b2 *(u - 1);
FREE b2;
b4 = b3 - bl;
FREE bl, Bb3;
ALLOCATE b5;
b> = b4 * u;
FREE b4
ALLOCATE b6, b7;
b6 = pixnl - pixn0;
b7 = b5 + bb6;
FREE 56, b5
ALLOCATE b8;
b& = b7 * u;
FREL b7;
mpixn = b8 + pixn;
FREE b8
RETURN ;
ENDPROC cubic;

C=15
APPENDIX

it

Tad

W TN AR

2
3
>

User Library Sample Procedure

A Data Formatting Procedure

list_array: PROCEDURE(x, wide);

/* List a two-dimensional float array on the standard */
/* output print file (list_output), 'wide" items per */
/* line (or less if they will not fit) */

DECLARE x(*, *) FLOAT(*), wide FIXED(15);
/* buffer for one line of output */
DECLARE line_size FIXED(15) CONSTANT INITIAL(128);
DECLARE sl CHARACTER(line_size) VARYING;
DECLARE (i, j, width) FIXED(15);
/*characters to display one "FLOAT" item */
width = VARCHAR(x([1l, 1]) +1;
DO i = 1 TO HBOULWD(x, 1);
sl = “ROW ° || VARCHAR(i);
k = 0;

DO j = 1 TO HBOUND(x,2);
IF LENGTH(sl) + width > line_size | k >= wide

THEN

WRITE FILE(list_output) FROM(sl);
Sl=' :;
k = 0;

ENDIF;

sl = sl || VARCHAR(x[i, jl) || = * ;

k = k+l;

ENDDO;

IF LENGTH(sl) > 4 THER
WRITE FILC(list_output) FROM(sl);
ENDDO;
ENDPROC list_array;

APPENDIX

METRIC SYSTIM
BASE UNTTS
anti Unit _ SI Symbol _ _Formuls
length metre m
mass kilogram kg z
time second]
electnc current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous wntensity candela cd
SUPPLEMENTARY UNITS:
plane angle radian rad w
solid angle sterad:an sr .
DERIVED UNITS:
Accelerstion metre per second squared m's
activity {of a radioective source) disintegration per second (disintegrstion)s
angular acceleration radian per second squared rad/s
angular veloaity radian per second rad/s
area square metre m
density kilogram per cubic metre - kgm
electnc capacitance fared F AV
electrical conductancs siemens S ANV
electric field strength voit per metre Vim
electric inductance henry H V-vA
electric potential difference volt v WA
electric resistance ohm ViA
electromotive force volt v WA
energy joule J N-m
entropy loule per kelvin WK
force newton N kg:mvs
frequency hertz Hz (cycleys
illuminance fux Ix Imm
i luminance candels per square metre cdm
luminous flux lumen Im cd-se
X magnetic field strength ampere per meue 2 A/m
‘ magnetic flux weber Wb Vs
! magnetic flux density tesls T Wbhm
1 magnetomotive force ampere A
3 power watt w Vs
' pressure pascal Pa N/m
quantity of electricity coulomb (= A
quantity of heat ijoule } Nm
radiant intensity walt per steradian . Wisr
specific hest joule per kilogram-keivin - Jkg-K
stress pascal Pa N/m
thermal conductivity watt per metre-kelvin wm-K
velocity metre per second ms
viscosity. dynamic pascal-second Pss
viscosity. kinematic square metre per second ms
voltsge volt v W/A
volume cubic metre m
wavenumber reciprocal metre (waveym
work joule | N-m
SI PREFIXES:
__Multiplication Factors Prefix SI Symbol
1 000 000 000 000 = 10'? targ T
1 000 000 000 = 10* 4188 :
1 000 000 = 10* mega M
1000 = 10? kilo k
100 = 10* hecto* h
10 = 10' doka* de
01=10"" dect® d
001 = 10"? centy® c
0001 = 10~? milli m
0000 001 = 10-¢ micro m
0 000 000 001 = 10~°* nano n
0.000 000 000 001 = 10~ "2 plco
0 000 000 000 KO0 001 = 10~1* femto r
0 000 000 000 000 0U0 001 = 10~'e atto »

* To be avoided where possible.

*US GOVERNMENT PRINTING OFFICE: 1977-714-028/231

MISSION
of
Rome Avr Development Center

RADC plans and conducts research, exploratory and advanced
development programs in command, control, and communications
(c3) activities, and in the ¢3 areas of information sciences ,
and intelligence. The principal technical mission areas 0,
are communications, electromagnetic guidance and control, ;
surveillance of ground and aerospace objects, intelligence
data collection and handling, information system technology,
ionospheric propagation, solid state sciences, microwave
pPhysics and electronic reliability, maintainability and

3
3

compatibility.
\UTIQ,

Q‘do < Q’C‘
2 2
(4
w, <

% &

776101
w T, 3 i at : oiitbb e
SRNPAEIno—

